

Scality Zenko CloudServer

Documentation

	Contributing
	Need help?

	Got an idea? Get started!

	Don’t write code? There are other ways to help!

	Getting Started
	Dependencies

	Installation

	Running CloudServer with a File Backend

	Running CloudServer with Multiple Data Backends

	Run CloudServer with an In-Memory Backend

	Run CloudServer for Continuous Integration Testing or in Production with Docker

	Running Functional Tests Locally

	Configuration

	Using Public Clouds as data backends
	Introduction

	AWS S3 as a data backend

	Microsoft Azure as a data backend

	For any data backend

	Clients
	GUI

	Command Line Tools

	JavaScript

	JAVA

	Ruby

	Python

	PHP

	Docker
	Environment Variables

	Tunables and Setup Tips

	Continuous Integration with a Docker-Hosted CloudServer

	In Production with a Docker-Hosted CloudServer

	Integrations
	High Availability

	S3FS

	Duplicity

	Architecture
	Versioning

	Data-metadata daemon Architecture and Operational guide

	Listing

	Encryption

	Add New Backend Storage To Zenko CloudServer
	Adding support for data backends not supporting the S3 API

	S3-Compatible Backends

	Add support for a new backend

	Add A New Backend
	Build a Custom Docker Image

	Adding support for data backends not supporting the S3 API
	General configuration

	Operation of type PUT

	Operation of type GET

	Operation of type DELETE

	Operation of type HEAD

	Healthcheck

	Multipart upload (MPU)

	Add functional tests

	Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

	S3-Compatible Backends
	Adding Support in CloudServer

Contributing

Need help?

We’re always glad to help out. Simply open a
GitHub issue [https://github.com/scality/S3/issues] and we’ll give you
insight. If what you want is not available, and if you’re willing to help us
out, we’ll be happy to welcome you in the team, whether for a small fix or for
a larger feature development. Thanks for your interest!

Got an idea? Get started!

In order to contribute, please follow the Contributing
Guidelines [https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md].
If anything is unclear to you, reach out to us on
slack [https://zenko-io.slack.com/] or via a GitHub issue.

Don’t write code? There are other ways to help!

We’re always eager to learn about our users’ stories. If you can’t contribute
code, but would love to help us, please shoot us an email at zenko@scality.com,
and tell us what our software enables you to do! Thanks for your time!

Getting Started

[image: Zenko CloudServer logo]

[image: CircleCI] [https://circleci.com/gh/scality/S3] [image: Scality CI] [http://ci.ironmann.io/gh/scality/S3]

Dependencies

Building and running the Scality Zenko CloudServer requires node.js 10.x and
yarn v1.17.x. Up-to-date versions can be found at
Nodesource [https://github.com/nodesource/distributions].

Installation

	Clone the source code

$ git clone https://github.com/scality/cloudserver.git

	Go to the cloudserver directory and use yarn to install the js dependencies.

$ cd cloudserver
$ yarn install

Running CloudServer with a File Backend

$ yarn start

This starts a Zenko CloudServer on port 8000. Two additional ports, 9990
and 9991, are also open locally for internal transfer of metadata and
data, respectively.

The default access key is accessKey1. The secret key is verySecretKey1.

By default, metadata files are saved in the localMetadata directory and
data files are saved in the localData directory in the local ./cloudserver
directory. These directories are pre-created within the repository. To
save data or metadata in different locations, you must specify them using
absolute paths. Thus, when starting the server:

$ mkdir -m 700 $(pwd)/myFavoriteDataPath
$ mkdir -m 700 $(pwd)/myFavoriteMetadataPath
$ export S3DATAPATH="$(pwd)/myFavoriteDataPath"
$ export S3METADATAPATH="$(pwd)/myFavoriteMetadataPath"
$ yarn start

Running CloudServer with Multiple Data Backends

$ export S3DATA='multiple'
$ yarn start

This starts a Zenko CloudServer on port 8000.

The default access key is accessKey1. The secret key is verySecretKey1.

With multiple backends, you can choose where each object is saved by setting
the following header with a location constraint in a PUT request:

'x-amz-meta-scal-location-constraint':'myLocationConstraint'

If no header is sent with a PUT object request, the bucket’s location
constraint determines where the data is saved. If the bucket has no
location constraint, the endpoint of the PUT request determines location.

See the Configuration section to set location constraints.

Run CloudServer with an In-Memory Backend

$ yarn run mem_backend

This starts a Zenko CloudServer on port 8000.

The default access key is accessKey1. The secret key is verySecretKey1.

Run CloudServer for Continuous Integration Testing or in Production with Docker

DOCKER

Testing

Run unit tests with the command:

$ yarn test

Run multiple-backend unit tests with:

$ CI=true S3DATA=multiple yarn start
$ yarn run multiple_backend_test

Run the linter with:

$ yarn run lint

Running Functional Tests Locally

To pass AWS and Azure backend tests locally, modify
tests/locationConfig/locationConfigTests.json so that awsbackend
specifies the bucketname of a bucket you have access to based on your
credentials, and modify azurebackend with details for your Azure account.

The test suite requires additional tools, s3cmd and Redis
installed in the environment the tests are running in.

	Install s3cmd [http://s3tools.org/download]

	Install redis [https://redis.io/download] and start Redis.

	Add localCache section to config.json:

"localCache": {
 "host": REDIS_HOST,
 "port": REDIS_PORT
 }

where REDIS_HOST is the Redis instance IP address ("127.0.0.1"
if Redis is running locally) and REDIS_PORT is the Redis instance
port (6379 by default)

	Add the following to the local etc/hosts file:

127.0.0.1 bucketwebsitetester.s3-website-us-east-1.amazonaws.com

	Start Zenko CloudServer in memory and run the functional tests:

$ CI=true yarn run mem_backend
$ CI=true yarn run ft_test

Configuration

There are three configuration files for Zenko CloudServer:

	conf/authdata.json, for authentication.

	locationConfig.json, to configure where data is saved.

	config.json, for general configuration options.

Location Configuration

You must specify at least one locationConstraint in locationConfig.json
(or leave it as pre-configured).

You must also specify ‘us-east-1’ as a locationConstraint. If you put a
bucket to an unknown endpoint and do not specify a locationConstraint in
the PUT bucket call, us-east-1 is used.

For instance, the following locationConstraint saves data sent to
myLocationConstraint to the file backend:

"myLocationConstraint": {
 "type": "file",
 "legacyAwsBehavior": false,
 "details": {}
},

Each locationConstraint must include the type, legacyAwsBehavior,
and details keys. type indicates which backend is used for that
region. Supported backends are mem, file, and scality.``legacyAwsBehavior``
indicates whether the region behaves the same as the AWS S3 ‘us-east-1’
region. If the locationConstraint type is scality, details must
contain connector information for sproxyd. If the locationConstraint type
is mem or file, details must be empty.

Once locationConstraints is set in locationConfig.json, specify a default
locationConstraint for each endpoint.

For instance, the following sets the localhost endpoint to the
myLocationConstraint data backend defined above:

"restEndpoints": {
 "localhost": "myLocationConstraint"
},

To use an endpoint other than localhost for Zenko CloudServer, the endpoint
must be listed in restEndpoints. Otherwise, if the server is running
with a:

	file backend: The default location constraint is file

	memory backend: The default location constraint is mem

Endpoints

The Zenko CloudServer supports endpoints that are rendered in either:

	path style: http://myhostname.com/mybucket or

	hosted style: http://mybucket.myhostname.com

However, if an IP address is specified for the host, hosted-style requests
cannot reach the server. Use path-style requests in that case. For example,
if you are using the AWS SDK for JavaScript, instantiate your client like this:

const s3 = new aws.S3({
 endpoint: 'http://127.0.0.1:8000',
 s3ForcePathStyle: true,
});

Setting Your Own Access and Secret Key Pairs

Credentials can be set for many accounts by editing conf/authdata.json,
but use the SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY
environment variables to specify your own credentials.

scality-access-key-id-and-scality-secret-access-key

SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY

These variables specify authentication credentials for an account named
“CustomAccount”.

Note

Anything in the authdata.json file is ignored.

$ SCALITY_ACCESS_KEY_ID=newAccessKey SCALITY_SECRET_ACCESS_KEY=newSecretKey yarn start

Using SSL

To use https with your local CloudServer, you must set up
SSL certificates.

	Deploy CloudServer using our DockerHub page [https://hub.docker.com/r/zenko/cloudserver/] (run it with a file
backend).

Note

If Docker is not installed locally, follow the
instructions to install it for your distribution [https://docs.docker.com/engine/installation/]

	Update the CloudServer container’s config

Add your certificates to your container. To do this,
#. exec inside the CloudServer container.

	Run $> docker ps to find the container’s ID (the corresponding
image name is scality/cloudserver.

	Copy the corresponding container ID (894aee038c5e in the present
example), and run:

$> docker exec -it 894aee038c5e bash

This puts you inside your container, using an interactive terminal.

	Generate the SSL key and certificates. The paths where the different
files are stored are defined after the -out option in each of the
following commands.

	Generate a private key for your certificate signing request (CSR):

$> openssl genrsa -out ca.key 2048

	Generate a self-signed certificate for your local certificate
authority (CA):

$> openssl req -new -x509 -extensions v3_ca -key ca.key -out ca.crt -days 99999 -subj "/C=US/ST=Country/L=City/O=Organization/CN=scality.test"

	Generate a key for the CloudServer:

$> openssl genrsa -out test.key 2048

	Generate a CSR for CloudServer:

$> openssl req -new -key test.key -out test.csr -subj "/C=US/ST=Country/L=City/O=Organization/CN=*.scality.test"

	Generate a certificate for CloudServer signed by the local CA:

$> openssl x509 -req -in test.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out test.crt -days 99999 -sha256

	Update Zenko CloudServer config.json. Add a certFilePaths
section to ./config.json with appropriate paths:

"certFilePaths": {
 "key": "./test.key",
 "cert": "./test.crt",
 "ca": "./ca.crt"
}

	Run your container with the new config.

	Exit the container by running $> exit.

	Restart the container with $> docker restart cloudserver.

	Update the host configuration by adding s3.scality.test
to /etc/hosts:

127.0.0.1 localhost s3.scality.test

	Copy the local certificate authority (ca.crt in step 4) from your
container. Choose the path to save this file to (in the present
example, /root/ca.crt), and run:

$> docker cp 894aee038c5e:/usr/src/app/ca.crt /root/ca.crt

Note

Your container ID will be different, and your path to
ca.crt may be different.

Test the Config

If aws-sdk is not installed, run $> yarn install aws-sdk.

Paste the following script into a file named “test.js”:

const AWS = require('aws-sdk');
const fs = require('fs');
const https = require('https');

const httpOptions = {
 agent: new https.Agent({
 // path on your host of the self-signed certificate
 ca: fs.readFileSync('./ca.crt', 'ascii'),
 }),
};

const s3 = new AWS.S3({
 httpOptions,
 accessKeyId: 'accessKey1',
 secretAccessKey: 'verySecretKey1',
 // The endpoint must be s3.scality.test, else SSL will not work
 endpoint: 'https://s3.scality.test:8000',
 sslEnabled: true,
 // With this setup, you must use path-style bucket access
 s3ForcePathStyle: true,
});

const bucket = 'cocoriko';

s3.createBucket({ Bucket: bucket }, err => {
 if (err) {
 return console.log('err createBucket', err);
 }
 return s3.deleteBucket({ Bucket: bucket }, err => {
 if (err) {
 return console.log('err deleteBucket', err);
 }
 return console.log('SSL is cool!');
 });
});

Now run this script with:

$> nodejs test.js

On success, the script outputs SSL is cool!.

Using Public Clouds as data backends

Introduction

As stated in our GETTING STARTED guide,
new data backends can be added by creating a region (also called location
constraint) with the right endpoint and credentials.
This section of the documentation shows you how to set up our currently
supported public cloud backends:

	Amazon S3 ;

	Microsoft Azure .

For each public cloud backend, you will have to edit your CloudServer
locationConfig.json and do a few setup steps on the applicable public
cloud backend.

AWS S3 as a data backend

From the AWS S3 Console (or any AWS S3 CLI tool)

Create a bucket where you will host your data for this new location constraint.
This bucket must have versioning enabled:

	This is an option you may choose to activate at step 2 of Bucket Creation in
the Console;

	With AWS CLI, use put-bucket-versioning from the s3api
commands on your bucket of choice;

	Using other tools, please refer to your tool’s documentation.

In this example, our bucket will be named zenkobucket and has versioning
enabled.

From the CloudServer repository

locationConfig.json

Edit this file to add a new location constraint. This location constraint will
contain the information for the AWS S3 bucket to which you will be writing your
data whenever you create a CloudServer bucket in this location.
There are a few configurable options here:

	type : set to aws_s3 to indicate this location constraint is
writing data to AWS S3;

	legacyAwsBehavior : set to true to indicate this region should
behave like AWS S3 us-east-1 region, set to false to indicate
this region should behave like any other AWS S3 region;

	bucketName : set to an existing bucket in your AWS S3 Account; this
is the bucket in which your data will be stored for this location constraint;

	awsEndpoint : set to your bucket’s endpoint, usually s3.amazonaws.com;

	bucketMatch : set to true if you want your object name to be the
same in your local bucket and your AWS S3 bucket; set to false if you
want your object name to be of the form {{localBucketName}}/{{objectname}}
in your AWS S3 hosted bucket;

	credentialsProfile and credentials are two ways to provide
your AWS S3 credentials for that bucket, use only one of them :

	credentialsProfile : set to the profile name allowing you to access
your AWS S3 bucket from your ~/.aws/credentials file;

	credentials : set the two fields inside the object (accessKey
and secretKey) to their respective values from your AWS credentials.

(...)
"aws-test": {
 "type": "aws_s3",
 "legacyAwsBehavior": true,
 "details": {
 "awsEndpoint": "s3.amazonaws.com",
 "bucketName": "zenkobucket",
 "bucketMatch": true,
 "credentialsProfile": "zenko"
 }
},
(...)

(...)
"aws-test": {
 "type": "aws_s3",
 "legacyAwsBehavior": true,
 "details": {
 "awsEndpoint": "s3.amazonaws.com",
 "bucketName": "zenkobucket",
 "bucketMatch": true,
 "credentials": {
 "accessKey": "WHDBFKILOSDDVF78NPMQ",
 "secretKey": "87hdfGCvDS+YYzefKLnjjZEYstOIuIjs/2X72eET"
 }
 }
},
(...)

Warning

If you set bucketMatch to true, we strongly advise that you
only have one local bucket per AWS S3 location.
Without bucketMatch set to false, your object names in your
AWS S3 bucket will not be prefixed with your Cloud Server bucket name. This
means that if you put an object foo to your CloudServer bucket
zenko1 and you then put a different foo to your CloudServer
bucket zenko2 and both zenko1 and zenko2 point to the
same AWS bucket, the second foo will overwrite the first foo.

~/.aws/credentials

Tip

If you explicitly set your accessKey and secretKey in the
credentials object of your aws_s3 location in your
locationConfig.json file, you may skip this section

Make sure your ~/.aws/credentials file has a profile matching the one
defined in your locationConfig.json. Following our previous example, it
would look like:

[zenko]
aws_access_key_id=WHDBFKILOSDDVF78NPMQ
aws_secret_access_key=87hdfGCvDS+YYzefKLnjjZEYstOIuIjs/2X72eET

Start the server with the ability to write to AWS S3

Inside the repository, once all the files have been edited, you should be able
to start the server and start writing data to AWS S3 through CloudServer.

Start the server locally
$> S3DATA=multiple yarn start

Run the server as a docker container with the ability to write to AWS S3

Tip

If you set the credentials object in your
locationConfig.json file, you don’t need to mount your
.aws/credentials file

Mount all the files that have been edited to override defaults, and do a
standard Docker run; then you can start writing data to AWS S3 through
CloudServer.

Start the server in a Docker container
$> sudo docker run -d --name CloudServer \
-v $(pwd)/data:/usr/src/app/localData \
-v $(pwd)/metadata:/usr/src/app/localMetadata \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v $(pwd)/conf/authdata.json:/usr/src/app/conf/authdata.json \
-v ~/.aws/credentials:/root/.aws/credentials \
-e S3DATA=multiple -e ENDPOINT=http://localhost -p 8000:8000 \
-d scality/cloudserver

Testing: put an object to AWS S3 using CloudServer

In order to start testing pushing to AWS S3, you will need to create a local
bucket in the AWS S3 location constraint - this local bucket will only store the
metadata locally, while both the data and any user metadata (x-amz-meta
headers sent with a PUT object, and tags) will be stored on AWS S3.
This example is based on all our previous steps.

Create a local bucket storing data in AWS S3
$> s3cmd --host=127.0.0.1:8000 mb s3://zenkobucket --region=aws-test
Put an object to AWS S3, and store the metadata locally
$> s3cmd --host=127.0.0.1:8000 put /etc/hosts s3://zenkobucket/testput
 upload: '/etc/hosts' -> 's3://zenkobucket/testput' [1 of 1]
 330 of 330 100% in 0s 380.87 B/s done
List locally to check you have the metadata
$> s3cmd --host=127.0.0.1:8000 ls s3://zenkobucket
 2017-10-23 10:26 330 s3://zenkobucket/testput

Then, from the AWS Console, if you go into your bucket, you should see your
newly uploaded object:

[image: AWS S3 Console upload example]

Troubleshooting

Make sure your ~/.s3cfg file has credentials matching your local
CloudServer credentials defined in conf/authdata.json. By default, the
access key is accessKey1 and the secret key is verySecretKey1.
For more informations, refer to our template ~/.s3cfg .

Pre-existing objects in your AWS S3 hosted bucket can unfortunately not be
accessed by CloudServer at this time.

Make sure versioning is enabled in your remote AWS S3 hosted bucket. To check,
using the AWS Console, click on your bucket name, then on “Properties” at the
top, and then you should see something like this:

[image: AWS Console showing versioning enabled]

Microsoft Azure as a data backend

From the MS Azure Console

From your Storage Account dashboard, create a container where you will host your
data for this new location constraint.

You will also need to get one of your Storage Account Access Keys, and to
provide it to CloudServer.
This can be found from your Storage Account dashboard, under “Settings, then
“Access keys”.

In this example, our container will be named zenkontainer, and will belong
to the zenkomeetups Storage Account.

From the CloudServer repository

locationConfig.json

Edit this file to add a new location constraint. This location constraint will
contain the information for the MS Azure container to which you will be writing
your data whenever you create a CloudServer bucket in this location.
There are a few configurable options here:

	type : set to azure to indicate this location constraint is
writing data to MS Azure;

	legacyAwsBehavior : set to true to indicate this region should
behave like AWS S3 us-east-1 region, set to false to indicate
this region should behave like any other AWS S3 region (in the case of MS Azure
hosted data, this is mostly relevant for the format of errors);

	azureStorageEndpoint : set to your storage account’s endpoint, usually
https://{{storageAccountName}}.blob.core.windows.net;

	azureContainerName : set to an existing container in your MS Azure
storage account; this is the container in which your data will be stored for
this location constraint;

	bucketMatch : set to true if you want your object name to be
the same in your local bucket and your MS Azure container; set to
false if you want your object name to be of the form
{{localBucketName}}/{{objectname}} in your MS Azure container ;

	azureStorageAccountName : the MS Azure Storage Account to which your
container belongs;

	azureStorageAccessKey : one of the Access Keys associated to the above
defined MS Azure Storage Account.

(...)
"azure-test": {
 "type": "azure",
 "legacyAwsBehavior": false,
 "details": {
 "azureStorageEndpoint": "https://zenkomeetups.blob.core.windows.net/",
 "bucketMatch": true,
 "azureContainerName": "zenkontainer",
 "azureStorageAccountName": "zenkomeetups",
 "azureStorageAccessKey": "auhyDo8izbuU4aZGdhxnWh0ODKFP3IWjsN1UfFaoqFbnYzPj9bxeCVAzTIcgzdgqomDKx6QS+8ov8PYCON0Nxw=="
 }
},
(...)

Warning

If you set bucketMatch to true, we strongly advise that you
only have one local bucket per MS Azure location.
Without bucketMatch set to false, your object names in your
MS Azure container will not be prefixed with your Cloud Server bucket name.
This means that if you put an object foo to your CloudServer bucket
zenko1 and you then put a different foo to your CloudServer
bucket zenko2 and both zenko1 and zenko2 point to the
same MS Azure container, the second foo will overwrite the first
foo.

Tip

You may export environment variables to override some of your
locationConfig.json variable ; the syntax for them is
{{region-name}}_{{ENV_VAR_NAME}}; currently, the available variables
are those shown below, with the values used in the current example:

$> export azure-test_AZURE_STORAGE_ACCOUNT_NAME="zenkomeetups"
$> export azure-test_AZURE_STORAGE_ACCESS_KEY="auhyDo8izbuU4aZGdhxnWh0ODKFP3IWjsN1UfFaoqFbnYzPj9bxeCVAzTIcgzdgqomDKx6QS+8ov8PYCON0Nxw=="
$> export azure-test_AZURE_STORAGE_ENDPOINT="https://zenkomeetups.blob.core.windows.net/"

Start the server with the ability to write to MS Azure

Inside the repository, once all the files have been edited, you should be able
to start the server and start writing data to MS Azure through CloudServer.

Start the server locally
$> S3DATA=multiple yarn start

Run the server as a docker container with the ability to write to MS Azure

Mount all the files that have been edited to override defaults, and do a
standard Docker run; then you can start writing data to MS Azure through
CloudServer.

Start the server in a Docker container
$> sudo docker run -d --name CloudServer \
-v $(pwd)/data:/usr/src/app/localData \
-v $(pwd)/metadata:/usr/src/app/localMetadata \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v $(pwd)/conf/authdata.json:/usr/src/app/conf/authdata.json \
-e S3DATA=multiple -e ENDPOINT=http://localhost -p 8000:8000
-d scality/cloudserver

Testing: put an object to MS Azure using CloudServer

In order to start testing pushing to MS Azure, you will need to create a local
bucket in the MS Azure region - this local bucket will only store the metadata
locally, while both the data and any user metadata (x-amz-meta headers
sent with a PUT object, and tags) will be stored on MS Azure.
This example is based on all our previous steps.

Create a local bucket storing data in MS Azure
$> s3cmd --host=127.0.0.1:8000 mb s3://zenkontainer --region=azure-test
Put an object to MS Azure, and store the metadata locally
$> s3cmd --host=127.0.0.1:8000 put /etc/hosts s3://zenkontainer/testput
 upload: '/etc/hosts' -> 's3://zenkontainer/testput' [1 of 1]
 330 of 330 100% in 0s 380.87 B/s done
List locally to check you have the metadata
$> s3cmd --host=127.0.0.1:8000 ls s3://zenkobucket
 2017-10-24 14:38 330 s3://zenkontainer/testput

Then, from the MS Azure Console, if you go into your container, you should see
your newly uploaded object:

[image: MS Azure Console upload example]

Troubleshooting

Make sure your ~/.s3cfg file has credentials matching your local
CloudServer credentials defined in conf/authdata.json. By default, the
access key is accessKey1 and the secret key is verySecretKey1.
For more informations, refer to our template ~/.s3cfg .

Pre-existing objects in your MS Azure container can unfortunately not be
accessed by CloudServer at this time.

For any data backend

From the CloudServer repository

config.json

Important

You only need to follow this section if you want to define a given location
as the default for a specific endpoint

Edit the restEndpoint section of your config.json file to add
an endpoint definition matching the location you want to use as a default for an
endpoint to this specific endpoint.
In this example, we’ll make custom-location our default location for the
endpoint zenkotos3.com:

(...)
"restEndpoints": {
 "localhost": "us-east-1",
 "127.0.0.1": "us-east-1",
 "cloudserver-front": "us-east-1",
 "s3.docker.test": "us-east-1",
 "127.0.0.2": "us-east-1",
 "zenkotos3.com": "custom-location"
},
(...)

Clients

List of applications that have been tested with Zenko CloudServer.

GUI

Cyberduck [https://cyberduck.io/?l=en]

	https://www.youtube.com/watch?v=-n2MCt4ukUg

	https://www.youtube.com/watch?v=IyXHcu4uqgU

Cloud Explorer [https://www.linux-toys.com/?p=945]

	https://www.youtube.com/watch?v=2hhtBtmBSxE

CloudBerry Lab [http://www.cloudberrylab.com]

	https://youtu.be/IjIx8g_o0gY

Command Line Tools

s3curl [https://github.com/rtdp/s3curl]

https://github.com/scality/S3/blob/master/tests/functional/s3curl/s3curl.pl

aws-cli [http://docs.aws.amazon.com/cli/latest/reference/]

~/.aws/credentials on Linux, OS X, or Unix or
C:\Users\USERNAME\.aws\credentials on Windows

[default]
aws_access_key_id = accessKey1
aws_secret_access_key = verySecretKey1

~/.aws/config on Linux, OS X, or Unix or
C:\Users\USERNAME\.aws\config on Windows

[default]
region = us-east-1

Note: us-east-1 is the default region, but you can specify any
region.

See all buckets:

aws s3 ls --endpoint-url=http://localhost:8000

Create bucket:

aws --endpoint-url=http://localhost:8000 s3 mb s3://mybucket

s3cmd [http://s3tools.org/s3cmd]

If using s3cmd as a client to S3 be aware that v4 signature format is
buggy in s3cmd versions < 1.6.1.

~/.s3cfg on Linux, OS X, or Unix or C:\Users\USERNAME\.s3cfg on
Windows

[default]
access_key = accessKey1
secret_key = verySecretKey1
host_base = localhost:8000
host_bucket = %(bucket).localhost:8000
signature_v2 = False
use_https = False

See all buckets:

s3cmd ls

rclone [http://rclone.org/s3/]

~/.rclone.conf on Linux, OS X, or Unix or
C:\Users\USERNAME\.rclone.conf on Windows

[remote]
type = s3
env_auth = false
access_key_id = accessKey1
secret_access_key = verySecretKey1
region = other-v2-signature
endpoint = http://localhost:8000
location_constraint =
acl = private
server_side_encryption =
storage_class =

See all buckets:

rclone lsd remote:

JavaScript

AWS JavaScript SDK [http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html]

const AWS = require('aws-sdk');

const s3 = new AWS.S3({
 accessKeyId: 'accessKey1',
 secretAccessKey: 'verySecretKey1',
 endpoint: 'localhost:8000',
 sslEnabled: false,
 s3ForcePathStyle: true,
});

JAVA

AWS JAVA SDK [http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html]

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.S3ClientOptions;
import com.amazonaws.services.s3.model.Bucket;

public class S3 {

 public static void main(String[] args) {

 AWSCredentials credentials = new BasicAWSCredentials("accessKey1",
 "verySecretKey1");

 // Create a client connection based on credentials
 AmazonS3 s3client = new AmazonS3Client(credentials);
 s3client.setEndpoint("http://localhost:8000");
 // Using path-style requests
 // (deprecated) s3client.setS3ClientOptions(new S3ClientOptions().withPathStyleAccess(true));
 s3client.setS3ClientOptions(S3ClientOptions.builder().setPathStyleAccess(true).build());

 // Create bucket
 String bucketName = "javabucket";
 s3client.createBucket(bucketName);

 // List off all buckets
 for (Bucket bucket : s3client.listBuckets()) {
 System.out.println(" - " + bucket.getName());
 }
 }
}

Ruby

AWS SDK for Ruby - Version 2 [http://docs.aws.amazon.com/sdkforruby/api/]

require 'aws-sdk'

s3 = Aws::S3::Client.new(
 :access_key_id => 'accessKey1',
 :secret_access_key => 'verySecretKey1',
 :endpoint => 'http://localhost:8000',
 :force_path_style => true
)

resp = s3.list_buckets

fog [http://fog.io/storage/]

require "fog"

connection = Fog::Storage.new(
{
 :provider => "AWS",
 :aws_access_key_id => 'accessKey1',
 :aws_secret_access_key => 'verySecretKey1',
 :endpoint => 'http://localhost:8000',
 :path_style => true,
 :scheme => 'http',
})

Python

boto2 [http://boto.cloudhackers.com/en/latest/ref/s3.html]

import boto
from boto.s3.connection import S3Connection, OrdinaryCallingFormat

connection = S3Connection(
 aws_access_key_id='accessKey1',
 aws_secret_access_key='verySecretKey1',
 is_secure=False,
 port=8000,
 calling_format=OrdinaryCallingFormat(),
 host='localhost'
)

connection.create_bucket('mybucket')

boto3 [http://boto3.readthedocs.io/en/latest/index.html]

Client integration

import boto3

client = boto3.client(
 's3',
 aws_access_key_id='accessKey1',
 aws_secret_access_key='verySecretKey1',
 endpoint_url='http://localhost:8000'
)

lists = client.list_buckets()

Full integration (with object mapping)

import os

from botocore.utils import fix_s3_host
import boto3

os.environ['AWS_ACCESS_KEY_ID'] = "accessKey1"
os.environ['AWS_SECRET_ACCESS_KEY'] = "verySecretKey1"

s3 = boto3.resource(service_name='s3', endpoint_url='http://localhost:8000')
s3.meta.client.meta.events.unregister('before-sign.s3', fix_s3_host)

for bucket in s3.buckets.all():
 print(bucket.name)

PHP

Should force path-style requests even though v3 advertises it does by default.

AWS PHP SDK v3 [https://docs.aws.amazon.com/aws-sdk-php/v3/guide]

use Aws\S3\S3Client;

$client = S3Client::factory([
 'region' => 'us-east-1',
 'version' => 'latest',
 'endpoint' => 'http://localhost:8000',
 'use_path_style_endpoint' => true,
 'credentials' => [
 'key' => 'accessKey1',
 'secret' => 'verySecretKey1'
]
]);

$client->createBucket(array(
 'Bucket' => 'bucketphp',
));

Docker

	Environment Variables

	Tunables and setup tips

	Examples for continuous integration with Docker

	Examples for going into production with Docker

Environment Variables

S3DATA

S3DATA=multiple

This variable enables running CloudServer with multiple data backends, defined
as regions.

For multiple data backends, a custom locationConfig.json file is required.
This file enables you to set custom regions. You must provide associated
rest_endpoints for each custom region in config.json.

Learn more about multiple-backend configurations

If you are using Scality RING endpoints, refer to your customer documentation.

Running CloudServer with an AWS S3-Hosted Backend

To run CloudServer with an S3 AWS backend, add a new section to the
locationConfig.json file with the aws_s3 location type:

(...)
"awsbackend": {
 "type": "aws_s3",
 "details": {
 "awsEndpoint": "s3.amazonaws.com",
 "bucketName": "yourawss3bucket",
 "bucketMatch": true,
 "credentialsProfile": "aws_hosted_profile"
 }
}
(...)

Edit your AWS credentials file to enable your preferred command-line tool.
This file must mention credentials for all backends in use. You can use
several profiles if multiple profiles are configured.

[default]
aws_access_key_id=accessKey1
aws_secret_access_key=verySecretKey1
[aws_hosted_profile]
aws_access_key_id={{YOUR_ACCESS_KEY}}
aws_secret_access_key={{YOUR_SECRET_KEY}}

As with locationConfig.json, the AWS credentials file must be mounted at
run time: -v ~/.aws/credentials:/root/.aws/credentials on Unix-like
systems (Linux, OS X, etc.), or
-v C:\Users\USERNAME\.aws\credential:/root/.aws/credentials on Windows

Note

One account cannot copy to another account with a source and
destination on real AWS unless the account associated with the
accessKey/secretKey pairs used for the destination bucket has source
bucket access privileges. To enable this, update ACLs directly on AWS.

S3BACKEND

S3BACKEND=file

For stored file data to persist, you must mount Docker volumes
for both data and metadata. See
In Production with a Docker-Hosted CloudServer

S3BACKEND=mem

This is ideal for testing: no data remains after the container is shut down.

ENDPOINT

This variable specifies the endpoint. To direct CloudServer requests to
new.host.com, for example, specify the endpoint with:

$ docker run -d --name cloudserver -p 8000:8000 -e ENDPOINT=new.host.com scality/cloudserver

Note

On Unix-like systems (Linux, OS X, etc.) edit /etc/hosts
to associate 127.0.0.1 with new.host.com.

SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY

These variables specify authentication credentials for an account named
“CustomAccount”.

Set account credentials for multiple accounts by editing conf/authdata.json
(see below for further details). To specify one set for personal use, set these
environment variables:

$ docker run -d --name cloudserver -p 8000:8000 -e SCALITY_ACCESS_KEY_ID=newAccessKey \
-e SCALITY_SECRET_ACCESS_KEY=newSecretKey scality/cloudserver

Note

This takes precedence over the contents of the authdata.json
file. The authdata.json file is ignored.

Note

The ACCESS_KEY and SECRET_KEY environment variables are
deprecated.

LOG_LEVEL

This variable changes the log level. There are three levels: info, debug,
and trace. The default is info. Debug provides more detailed logs, and trace
provides the most detailed logs.

$ docker run -d --name cloudserver -p 8000:8000 -e LOG_LEVEL=trace scality/cloudserver

SSL

Set true, this variable runs CloudServer with SSL.

If SSL is set true:

	The ENDPOINT environment variable must also be specified.

	On Unix-like systems (Linux, OS X, etc.), 127.0.0.1 must be associated with
<YOUR_ENDPOINT> in /etc/hosts.

Warning

Self-signed certs with a CA generated within the container are
suitable for testing purposes only. Clients cannot trust them, and they may
disappear altogether on a container upgrade. The best security practice for
production environments is to use an extra container, such as
haproxy/nginx/stunnel, for SSL/TLS termination and to pull certificates
from a mounted volume, limiting what an exploit on either component
can expose.

 $ docker run -d --name cloudserver -p 8000:8000 -e SSL=TRUE -e ENDPOINT=<YOUR_ENDPOINT> \
 scality/cloudserver

For more information about using ClousdServer with SSL, see `Using SSL <./GETTING_STARTED#Using SSL>`__

LISTEN_ADDR

This variable causes CloudServer and its data and metadata components to
listen on the specified address. This allows starting the data or metadata
servers as standalone services, for example.

docker run -d --name s3server-data -p 9991:9991 -e LISTEN_ADDR=0.0.0.0
scality/s3server yarn run start_dataserver

DATA_HOST and METADATA_HOST

These variables configure the data and metadata servers to use,
usually when they are running on another host and only starting the stateless
Zenko CloudServer.

$ docker run -d --name cloudserver -e DATA_HOST=cloudserver-data \
-e METADATA_HOST=cloudserver-metadata scality/cloudserver yarn run start_s3server

REDIS_HOST

Use this variable to connect to the redis cache server on another host than
localhost.

$ docker run -d --name cloudserver -p 8000:8000 \
-e REDIS_HOST=my-redis-server.example.com scality/cloudserver

REDIS_PORT

Use this variable to connect to the Redis cache server on a port other
than the default 6379.

$ docker run -d --name cloudserver -p 8000:8000 \
-e REDIS_PORT=6379 scality/cloudserver

Tunables and Setup Tips

Using Docker Volumes

CloudServer runs with a file backend by default, meaning that data is
stored inside the CloudServer’s Docker container.

For data and metadata to persist, data and metadata must be hosted in Docker
volumes outside the CloudServer’s Docker container. Otherwise, the data
and metadata are destroyed when the container is erased.

$ docker run -­v $(pwd)/data:/usr/src/app/localData -­v $(pwd)/metadata:/usr/src/app/localMetadata \
-p 8000:8000 ­-d scality/cloudserver

This command mounts the ./data host directory to the container
at /usr/src/app/localData and the ./metadata host directory to
the container at /usr/src/app/localMetaData.

Tip

These host directories can be mounted to any accessible mount
point, such as /mnt/data and /mnt/metadata, for example.

Adding, Modifying, or Deleting Accounts or Credentials

	Create a customized authdata.json file locally based on /conf/authdata.json.

	Use Docker volumes [https://docs.docker.com/storage/volumes/]
to override the default authdata.json through a Docker file mapping.

For example:

$ docker run -v $(pwd)/authdata.json:/usr/src/app/conf/authdata.json -p 8000:8000 -d \
scality/cloudserver

Specifying a Host Name

To specify a host name (for example, s3.domain.name), provide your own
config.json [https://github.com/scality/cloudserver/blob/master/config.json]
file using Docker volumes [https://docs.docker.com/storage/volumes/].

First, add a new key-value pair to the restEndpoints section of your
config.json. Make the key the host name you want, and the value the default
location_constraint for this endpoint.

For example, s3.example.com is mapped to us-east-1 which is one
of the location_constraints listed in your locationConfig.json file
here [https://github.com/scality/S3/blob/master/locationConfig.json].

For more information about location configuration, see:
GETTING STARTED

"restEndpoints": {
 "localhost": "file",
 "127.0.0.1": "file",
 ...
 "cloudserver.example.com": "us-east-1"
},

Next, run CloudServer using a Docker volume [https://docs.docker.com/engine/tutorials/dockervolumes/]:

$ docker run -v $(pwd)/config.json:/usr/src/app/config.json -p 8000:8000 -d scality/cloudserver

The local config.json file overrides the default one through a Docker
file mapping.

Running as an Unprivileged User

CloudServer runs as root by default.

To change this, modify the dockerfile and specify a user before the
entry point.

The user must exist within the container, and must own the
/usr/src/app directory for CloudServer to run.

For example, the following dockerfile lines can be modified:

...
&& groupadd -r -g 1001 scality \
&& useradd -u 1001 -g 1001 -d /usr/src/app -r scality \
&& chown -R scality:scality /usr/src/app

...

USER scality
ENTRYPOINT ["/usr/src/app/docker-entrypoint.sh"]

Continuous Integration with a Docker-Hosted CloudServer

When you start the Docker CloudServer image, you can adjust the
configuration of the CloudServer instance by passing one or more
environment variables on the docker run command line.

To run CloudServer for CI with custom locations (one in-memory,
one hosted on AWS), and custom credentials mounted:

$ docker run --name CloudServer -p 8000:8000 \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v $(pwd)/authdata.json:/usr/src/app/conf/authdata.json \
-v ~/.aws/credentials:/root/.aws/credentials \
-e S3DATA=multiple -e S3BACKEND=mem scality/cloudserver

To run CloudServer for CI with custom locations, (one in-memory, one
hosted on AWS, and one file), and custom credentials set as environment
variables):

$ docker run --name CloudServer -p 8000:8000 \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v ~/.aws/credentials:/root/.aws/credentials \
-v $(pwd)/data:/usr/src/app/localData -v $(pwd)/metadata:/usr/src/app/localMetadata \
-e SCALITY_ACCESS_KEY_ID=accessKey1 \
-e SCALITY_SECRET_ACCESS_KEY=verySecretKey1 \
-e S3DATA=multiple -e S3BACKEND=mem scality/cloudserver

In Production with a Docker-Hosted CloudServer

Because data must persist in production settings, CloudServer offers
multiple-backend capabilities. This requires a custom endpoint
and custom credentials for local storage.

Customize these with:

$ docker run -d --name CloudServer \
-v $(pwd)/data:/usr/src/app/localData -v $(pwd)/metadata:/usr/src/app/localMetadata \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v $(pwd)/authdata.json:/usr/src/app/conf/authdata.json \
-v ~/.aws/credentials:/root/.aws/credentials -e S3DATA=multiple \
-e ENDPOINT=custom.endpoint.com \
-p 8000:8000 ­-d scality/cloudserver \

Integrations

High Availability

Docker Swarm [https://docs.docker.com/engine/swarm/] is a clustering tool
developed by Docker for use with its containers. It can be used to start
services, which we define to ensure CloudServer’s continuous availability to
end users. A swarm defines a manager and n workers among n + 1 servers.

This tutorial shows how to perform a basic setup with three servers, which
provides strong service resiliency, while remaining easy to use and
maintain. We will use NFS through Docker to share data and
metadata between the different servers.

Sections are labeled On Server, On Clients, or
On All Machines, referring respectively to NFS server, NFS clients, or
NFS server and clients. In the present example, the server’s IP address is
10.200.15.113 and the client IP addresses are 10.200.15.96 and
10.200.15.97

	Install Docker (on All Machines)

Docker 17.03.0-ce is used for this tutorial. Docker 1.12.6 and later will
likely work, but is not tested.

	On Ubuntu 14.04
Install Docker CE for Ubuntu as documented at Docker [https://docs.docker.com/install/linux/docker-ce/ubuntu/].
Install the aufs dependency as recommended by Docker. The required
commands are:

$> sudo apt-get update
$> sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual
$> sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
$> curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$> sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
$> sudo apt-get update
$> sudo apt-get install docker-ce

	On CentOS 7
Install Docker CE as documented at Docker [https://docs.docker.com/install/linux/docker-ce/centos/].
The required commands are:

$> sudo yum install -y yum-utils
$> sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
$> sudo yum makecache fast
$> sudo yum install docker-ce
$> sudo systemctl start docker

	Install NFS on Client(s)

NFS clients mount Docker volumes over the NFS server’s shared folders.
If the NFS commons are installed, manual mounts are no longer needed.

	On Ubuntu 14.04

Install the NFS commons with apt-get:

$> sudo apt-get install nfs-common

	On CentOS 7

Install the NFS utils; then start required services:

$> yum install nfs-utils
$> sudo systemctl enable rpcbind
$> sudo systemctl enable nfs-server
$> sudo systemctl enable nfs-lock
$> sudo systemctl enable nfs-idmap
$> sudo systemctl start rpcbind
$> sudo systemctl start nfs-server
$> sudo systemctl start nfs-lock
$> sudo systemctl start nfs-idmap

	Install NFS (on Server)

The NFS server hosts the data and metadata. The package(s) to install on it
differs from the package installed on the clients.

	On Ubuntu 14.04

Install the NFS server-specific package and the NFS commons:

$> sudo apt-get install nfs-kernel-server nfs-common

	On CentOS 7

Install the NFS utils and start the required services:

$> yum install nfs-utils
$> sudo systemctl enable rpcbind
$> sudo systemctl enable nfs-server
$> sudo systemctl enable nfs-lock
$> sudo systemctl enable nfs-idmap
$> sudo systemctl start rpcbind
$> sudo systemctl start nfs-server
$> sudo systemctl start nfs-lock
$> sudo systemctl start nfs-idmap

For both distributions:

	Choose where shared data and metadata from the local
CloudServer [http://www.zenko.io/cloudserver/] shall be stored (The
present example uses /var/nfs/data and /var/nfs/metadata). Set permissions
for these folders for
sharing over NFS:

$> mkdir -p /var/nfs/data /var/nfs/metadata
$> chmod -R 777 /var/nfs/

	The /etc/exports file configures network permissions and r-w-x permissions
for NFS access. Edit /etc/exports, adding the following lines:

/var/nfs/data 10.200.15.96(rw,sync,no_root_squash) 10.200.15.97(rw,sync,no_root_squash)
/var/nfs/metadata 10.200.15.96(rw,sync,no_root_squash) 10.200.15.97(rw,sync,no_root_squash)

Ubuntu applies the no_subtree_check option by default, so both
folders are declared with the same permissions, even though they’re in
the same tree.

	Export this new NFS table:

$> sudo exportfs -a

	Edit the MountFlags option in the Docker config in
/lib/systemd/system/docker.service to enable NFS mount from Docker volumes
on other machines:

MountFlags=shared

	Restart the NFS server and Docker daemons to apply these changes.

	On Ubuntu 14.04

$> sudo service nfs-kernel-server restart
$> sudo service docker restart

	On CentOS 7

$> sudo systemctl restart nfs-server
$> sudo systemctl daemon-reload
$> sudo systemctl restart docker

	Set Up a Docker Swarm

	On all machines and distributions:

Set up the Docker volumes to be mounted to the NFS server for CloudServer’s
data and metadata storage. The following commands must be replicated on all
machines:

$> docker volume create --driver local --opt type=nfs --opt o=addr=10.200.15.113,rw --opt device=:/var/nfs/data --name data
$> docker volume create --driver local --opt type=nfs --opt o=addr=10.200.15.113,rw --opt device=:/var/nfs/metadata --name metadata

There is no need to docker exec these volumes to mount them: the
Docker Swarm manager does this when the Docker service is started.

	On a server:

To start a Docker service on a Docker Swarm cluster, initialize the cluster
(that is, define a manager), prompt workers/nodes to join in, and then start
the service.

Initialize the swarm cluster, and review its response:

$> docker swarm init --advertise-addr 10.200.15.113

Swarm initialized: current node (db2aqfu3bzfzzs9b1kfeaglmq) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-5yxxencrdoelr7mpltljn325uz4v6fe1gojl14lzceij3nujzu-2vfs9u6ipgcq35r90xws3stka \
10.200.15.113:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

	On clients:

Copy and paste the command provided by your Docker Swarm init. A successful
request/response will resemble:

$> docker swarm join --token SWMTKN-1-5yxxencrdoelr7mpltljn325uz4v6fe1gojl14lzceij3nujzu-2vfs9u6ipgcq35r90xws3stka 10.200.15.113:2377

This node joined a swarm as a worker.

Set Up Docker Swarm on Clients on a Server

Start the service on the Swarm cluster.

$> docker service create --name s3 --replicas 1 --mount type=volume,source=data,target=/usr/src/app/localData --mount type=volume,source=metadata,target=/usr/src/app/localMetadata -p 8000:8000 scality/cloudserver

On a successful installation, docker service ls returns the following
output:

$> docker service ls
ID NAME MODE REPLICAS IMAGE
ocmggza412ft s3 replicated 1/1 scality/cloudserver:latest

If the service does not start, consider disabling apparmor/SELinux.

Testing the High-Availability CloudServer

On all machines (client/server) and distributions (Ubuntu and CentOS),
determine where CloudServer is running using docker ps. CloudServer can
operate on any node of the Swarm cluster, manager or worker. When you find
it, you can kill it with docker stop <container id>. It will respawn
on a different node. Now, if one server falls, or if Docker stops
unexpectedly, the end user will still be able to access your the local CloudServer.

Troubleshooting

To troubleshoot the service, run:

$> docker service ps s3docker service ps s3
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR
0ar81cw4lvv8chafm8pw48wbc s3.1 scality/cloudserver localhost.localdomain.localdomain Running Running 7 days ago
cvmf3j3bz8w6r4h0lf3pxo6eu _ s3.1 scality/cloudserver localhost.localdomain.localdomain Shutdown Failed 7 days ago "task: non-zero exit (137)"

If the error is truncated, view the error in detail by inspecting the
Docker task ID:

$> docker inspect cvmf3j3bz8w6r4h0lf3pxo6eu

Off you go!

Let us know how you use this and if you’d like any specific developments
around it. Even better: come and contribute to our Github repository [https://github.com/scality/s3/]! We look forward to meeting you!

S3FS

You can export buckets as a filesystem with s3fs on CloudServer.

s3fs [https://github.com/s3fs-fuse/s3fs-fuse] is an open source
tool, available both on Debian and RedHat distributions, that enables
you to mount an S3 bucket on a filesystem-like backend. This tutorial uses
an Ubuntu 14.04 host to deploy and use s3fs over CloudServer.

Deploying Zenko CloudServer with SSL

First, deploy CloudServer with a file backend using our DockerHub page [https://hub.docker.com/r/scality/cloudserver/].

Note

If Docker is not installed on your machine, follow
these instructions [https://docs.docker.com/engine/installation/]
to install it for your distribution.

You must also set up SSL with CloudServer to use s3fs. See Using SSL for instructions.

s3fs Setup

Installing s3fs

Follow the instructions in the s3fs README [https://github.com/s3fs-fuse/s3fs-fuse/blob/master/README.md#installation-from-pre-built-packages],

Check that s3fs is properly installed. A version check should return
a response resembling:

$> s3fs --version

Amazon Simple Storage Service File System V1.80(commit:d40da2c) with OpenSSL
Copyright (C) 2010 Randy Rizun <rrizun@gmail.com>
License GPL2: GNU GPL version 2 <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Configuring s3fs

s3fs expects you to provide it with a password file. Our file is
/etc/passwd-s3fs. The structure for this file is
ACCESSKEYID:SECRETKEYID, so, for CloudServer, you can run:

$> echo 'accessKey1:verySecretKey1' > /etc/passwd-s3fs
$> chmod 600 /etc/passwd-s3fs

Using CloudServer with s3fs

	Use /mnt/tests3fs as a mount point.

$> mkdir /mnt/tests3fs

	Create a bucket on your local CloudServer. In the present example it is
named “tests3fs”.

$> s3cmd mb s3://tests3fs

	Mount the bucket to your mount point with s3fs:

$> s3fs tests3fs /mnt/tests3fs -o passwd_file=/etc/passwd-s3fs -o url="https://s3.scality.test:8000/" -o use_path_request_style

The structure of this command is:
s3fs BUCKET_NAME PATH/TO/MOUNTPOINT -o OPTIONS. Of these mandatory
options:

	passwd_file specifies the path to the password file.

	url specifies the host name used by your SSL provider.

	
	use_path_request_style forces the path style (by default,

	s3fs uses DNS-style subdomains).

Once the bucket is mounted, files added to the mount point or
objects added to the bucket will appear in both locations.

Example

Create two files, and then a directory with a file in our mount point:

$> touch /mnt/tests3fs/file1 /mnt/tests3fs/file2
$> mkdir /mnt/tests3fs/dir1
$> touch /mnt/tests3fs/dir1/file3

Now, use s3cmd to show what is in CloudServer:

$> s3cmd ls -r s3://tests3fs

2017-02-28 17:28 0 s3://tests3fs/dir1/
2017-02-28 17:29 0 s3://tests3fs/dir1/file3
2017-02-28 17:28 0 s3://tests3fs/file1
2017-02-28 17:28 0 s3://tests3fs/file2

Now you can enjoy a filesystem view on your local CloudServer.

Duplicity

How to back up your files with CloudServer.

Installing Duplicity and its Dependencies

To install Duplicity [http://duplicity.nongnu.org/],
go to this site [https://code.launchpad.net/duplicity/0.7-series].
Download the latest tarball. Decompress it and follow the instructions
in the README.

$> tar zxvf duplicity-0.7.11.tar.gz
$> cd duplicity-0.7.11
$> python setup.py install

You may receive error messages indicating the need to install some or all
of the following dependencies:

$> apt-get install librsync-dev gnupg
$> apt-get install python-dev python-pip python-lockfile
$> pip install -U boto

Testing the Installation

	Check that CloudServer is running. Run $> docker ps. You should
see one container named scality/cloudserver. If you do not, run
$> docker start cloudserver and check again.

	Duplicity uses a module called “Boto” to send requests to S3. Boto
requires a configuration file located in /etc/boto.cfg to store
your credentials and preferences. A minimal configuration
you can fine tune following these instructions [http://boto.cloudhackers.com/en/latest/getting_started.html] is
shown here:

 [Credentials]
 aws_access_key_id = accessKey1
 aws_secret_access_key = verySecretKey1

 [Boto]
 # If using SSL, set to True
 is_secure = False
 # If using SSL, unmute and provide absolute path to local CA certificate
 # ca_certificates_file = /absolute/path/to/ca.crt

.. note:: To set up SSL with CloudServer, check out our `Using SSL
 <./GETTING_STARTED#Using_SSL>`__ in GETTING STARTED.

	At this point all requirements to run CloudServer as a backend to Duplicity
have been met. A local folder/file should back up to the local S3.
Try it with the decompressed Duplicity folder:

$> duplicity duplicity-0.7.11 "s3://127.0.0.1:8000/testbucket/"

Note

	Duplicity will prompt for a symmetric encryption passphrase.

	Save it carefully, as you will need it to recover your data.
Alternatively, you can add the --no-encryption flag
and the data will be stored plain.

If this command is successful, you will receive an output resembling:

--------------[Backup Statistics]--------------
StartTime 1486486547.13 (Tue Feb 7 16:55:47 2017)
EndTime 1486486547.40 (Tue Feb 7 16:55:47 2017)
ElapsedTime 0.27 (0.27 seconds)
SourceFiles 388
SourceFileSize 6634529 (6.33 MB)
NewFiles 388
NewFileSize 6634529 (6.33 MB)
DeletedFiles 0
ChangedFiles 0
ChangedFileSize 0 (0 bytes)
ChangedDeltaSize 0 (0 bytes)
DeltaEntries 388
RawDeltaSize 6392865 (6.10 MB)
TotalDestinationSizeChange 2003677 (1.91 MB)
Errors 0

Congratulations! You can now back up to your local S3 through Duplicity.

Automating Backups

The easiest way to back up files periodically is to write a bash script
and add it to your crontab. A suggested script follows.

#!/bin/bash

Export your passphrase so you don't have to type anything
export PASSPHRASE="mypassphrase"

To use a GPG key, put it here and uncomment the line below
#GPG_KEY=

Define your backup bucket, with localhost specified
DEST="s3://127.0.0.1:8000/testbucketcloudserver/"

Define the absolute path to the folder to back up
SOURCE=/root/testfolder

Set to "full" for full backups, and "incremental" for incremental backups
Warning: you must perform one full backup befor you can perform
incremental ones on top of it
FULL=incremental

How long to keep backups. If you don't want to delete old backups, keep
this value empty; otherwise, the syntax is "1Y" for one year, "1M" for
one month, "1D" for one day.
OLDER_THAN="1Y"

is_running checks whether Duplicity is currently completing a task
is_running=$(ps -ef | grep duplicity | grep python | wc -l)

If Duplicity is already completing a task, this will not run
if [$is_running -eq 0]; then
 echo "Backup for ${SOURCE} started"

 # To delete backups older than a certain time, do it here
 if ["$OLDER_THAN" != ""]; then
 echo "Removing backups older than ${OLDER_THAN}"
 duplicity remove-older-than ${OLDER_THAN} ${DEST}
 fi

 # This is where the actual backup takes place
 echo "Backing up ${SOURCE}..."
 duplicity ${FULL} \
 ${SOURCE} ${DEST}
 # If you're using GPG, paste this in the command above
 # --encrypt-key=${GPG_KEY} --sign-key=${GPG_KEY} \
 # If you want to exclude a subfolder/file, put it below and
 # paste this
 # in the command above
 # --exclude=/${SOURCE}/path_to_exclude \

 echo "Backup for ${SOURCE} complete"
 echo "------------------------------------"
fi
Forget the passphrase...
unset PASSPHRASE

Put this file in /usr/local/sbin/backup.sh. Run crontab -e and
paste your configuration into the file that opens. If you’re unfamiliar
with Cron, here is a good HowTo [https://help.ubuntu.com/community/CronHowto]. If the folder being
backed up is a folder to be modified permanently during the work day,
we can set incremental backups every 5 minutes from 8 AM to 9 PM Monday
through Friday by pasting the following line into crontab:

*/5 8-20 * * 1-5 /usr/local/sbin/backup.sh

Adding or removing files from the folder being backed up will result in
incremental backups in the bucket.

Architecture

Versioning

This document describes Zenko CloudServer’s support for the AWS S3 Bucket
Versioning feature.

AWS S3 Bucket Versioning

See AWS documentation for a description of the Bucket Versioning
feature:

	Bucket
Versioning [http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html]

	Object
Versioning [http://docs.aws.amazon.com/AmazonS3/latest/dev/ObjectVersioning.html]

This document assumes familiarity with the details of Bucket Versioning,
including null versions and delete markers, described in the above
links.

Implementation of Bucket Versioning in Zenko CloudServer

Overview of Metadata and API Component Roles

Each version of an object is stored as a separate key in metadata. The
S3 API interacts with the metadata backend to store, retrieve, and
delete version metadata.

The implementation of versioning within the metadata backend is naive.
The metadata backend does not evaluate any information about bucket or
version state (whether versioning is enabled or suspended, and whether a
version is a null version or delete marker). The S3 front-end API
manages the logic regarding versioning information, and sends
instructions to metadata to handle the basic CRUD operations for version
metadata.

The role of the S3 API can be broken down into the following:

	put and delete version data

	store extra information about a version, such as whether it is a
delete marker or null version, in the object’s metadata

	send instructions to metadata backend to store, retrieve, update and
delete version metadata based on bucket versioning state and version
metadata

	encode version ID information to return in responses to requests, and
decode version IDs sent in requests

The implementation of Bucket Versioning in S3 is described in this
document in two main parts. The first section, “Implementation of
Bucket Versioning in
Metadata”,
describes the way versions are stored in metadata, and the metadata
options for manipulating version metadata.

The second section, “Implementation of Bucket Versioning in
API”, describes the way
the metadata options are used in the API within S3 actions to create new
versions, update their metadata, and delete them. The management of null
versions and creation of delete markers is also described in this
section.

Implementation of Bucket Versioning in Metadata

As mentioned above, each version of an object is stored as a separate
key in metadata. We use version identifiers as the suffix for the keys
of the object versions, and a special version (the “Master
Version”) to represent the latest version.

An example of what the metadata keys might look like for an object
foo/bar with three versions (with . representing a null character):

	key

	foo/bar

	foo/bar.098506163554375999999PARIS 0.a430a1f85c6ec

	foo/bar.098506163554373999999PARIS 0.41b510cd0fdf8

	foo/bar.098506163554373999998PARIS 0.f9b82c166f695

The most recent version created is represented above in the key
foo/bar and is the master version. This special version is described
further in the section “Master Version”.

Version ID and Metadata Key Format

The version ID is generated by the metadata backend, and encoded in a
hexadecimal string format by S3 before sending a response to a request.
S3 also decodes the hexadecimal string received from a request before
sending to metadata to retrieve a particular version.

The format of a version_id is: ts rep_group_id seq_id
where:

	ts: is the combination of epoch and an increasing number

	rep_group_id: is the name of deployment(s) considered one unit
used for replication

	seq_id: is a unique value based on metadata information.

The format of a key in metadata for a version is:

object_name separator version_id where:

	object_name: is the key of the object in metadata

	separator: we use the null character (0x00 or \0) as
the separator between the object_name and the version_id of a
key

	version_id: is the version identifier; this encodes the ordering
information in the format described above as metadata orders keys
alphabetically

An example of a key in metadata:
foo\01234567890000777PARIS 1234.123456 indicating that this specific
version of foo was the 000777th entry created during the epoch
1234567890 in the replication group PARIS with 1234.123456
as seq_id.

Master Version

We store a copy of the latest version of an object’s metadata using
object_name as the key; this version is called the master version.
The master version of each object facilitates the standard GET
operation, which would otherwise need to scan among the list of versions
of an object for its latest version.

The following table shows the layout of all versions of foo in the
first example stored in the metadata (with dot . representing the
null separator):

	key

	value

	foo

	B

	foo.v2

	B

	foo.v1

	A

Metadata Versioning Options

Zenko CloudServer sends instructions to the metadata engine about whether to
create a new version or overwrite, retrieve, or delete a specific
version by sending values for special options in PUT, GET, or DELETE
calls to metadata. The metadata engine can also list versions in the
database, which is used by Zenko CloudServer to list object versions.

These only describe the basic CRUD operations that the metadata engine
can handle. How these options are used by the S3 API to generate and
update versions is described more comprehensively in “Implementation of
Bucket Versioning in
API”.

Note: all operations (PUT and DELETE) that generate a new version of an
object will return the version_id of the new version to the API.

PUT

	no options: original PUT operation, will update the master version

	versioning: true create a new version of the object, then update
the master version with this version.

	versionId: <versionId> create or update a specific version (for updating
version’s ACL or tags, or remote updates in geo-replication)

	if the version identified by versionId happens to be the latest
version, the master version will be updated as well

	if the master version is not as recent as the version identified by
versionId, as may happen with cross-region replication, the master
will be updated as well

	note that with versionId set to an empty string '', it will
overwrite the master version only (same as no options, but the master
version will have a versionId property set in its metadata like
any other version). The versionId will never be exposed to an
external user, but setting this internal-only versionID enables
Zenko CloudServer to find this version later if it is no longer the master.
This option of versionId set to '' is used for creating null
versions once versioning has been suspended, which is discussed in
“Null Version Management”.

In general, only one option is used at a time. When versionId and
versioning are both set, only the versionId option will have an effect.

DELETE

	no options: original DELETE operation, will delete the master version

	versionId: <versionId> delete a specific version

A deletion targeting the latest version of an object has to:

	delete the specified version identified by versionId

	replace the master version with a version that is a placeholder for
deletion

	
	this version contains a special keyword, ‘isPHD’, to indicate the

	master version was deleted and needs to be updated

	initiate a repair operation to update the value of the master
version:

	involves listing the versions of the object and get the latest
version to replace the placeholder delete version

	if no more versions exist, metadata deletes the master version,
removing the key from metadata

Note: all of this happens in metadata before responding to the front-end api,
and only when the metadata engine is instructed by Zenko CloudServer to delete
a specific version or the master version.
See section “Delete Markers” for a description of what
happens when a Delete Object request is sent to the S3 API.

GET

	no options: original GET operation, will get the master version

	versionId: <versionId> retrieve a specific version

The implementation of a GET operation does not change compared to the
standard version. A standard GET without versioning information would
get the master version of a key. A version-specific GET would retrieve
the specific version identified by the key for that version.

LIST

For a standard LIST on a bucket, metadata iterates through the keys by
using the separator (\0, represented by . in examples) as an
extra delimiter. For a listing of all versions of a bucket, there is no
change compared to the original listing function. Instead, the API
component returns all the keys in a List Objects call and filters for
just the keys of the master versions in a List Object Versions call.

For example, a standard LIST operation against the keys in a table below
would return from metadata the list of
[foo/bar, bar, qux/quz, quz].

	key

	foo/bar

	foo/bar.v2

	foo/bar.v1

	bar

	qux/quz

	qux/quz.v2

	qux/quz.v1

	quz

	quz.v2

	quz.v1

Implementation of Bucket Versioning in API

Object Metadata Versioning Attributes

To access all the information needed to properly handle all cases that
may exist in versioned operations, the API stores certain
versioning-related information in the metadata attributes of each
version’s object metadata.

These are the versioning-related metadata properties:

	isNull: whether the version being stored is a null version.

	nullVersionId: the unencoded version ID of the latest null
version that existed before storing a non-null version.

	isDeleteMarker: whether the version being stored is a delete
marker.

The metadata engine also sets one additional metadata property when
creating the version.

	versionId: the unencoded version ID of the version being stored.

Null versions and delete markers are described in further detail in
their own subsections.

Creation of New Versions

When versioning is enabled in a bucket, APIs which normally result in
the creation of objects, such as Put Object, Complete Multipart Upload
and Copy Object, will generate new versions of objects.

Zenko CloudServer creates a new version and updates the master version using the
versioning: true option in PUT calls to the metadata engine. As an
example, when two consecutive Put Object requests are sent to the Zenko
CloudServer for a versioning-enabled bucket with the same key names, there
are two corresponding metadata PUT calls with the versioning option
set to true.

The PUT calls to metadata and resulting keys are shown below:

	PUT foo (first put), versioning: true

	key

	value

	foo

	A

	foo.v1

	A

	PUT foo (second put), versioning: true

	key

	value

	foo

	B

	foo.v2

	B

	foo.v1

	A

Null Version Management

In a bucket without versioning, or when versioning is suspended, putting
an object with the same name twice should result in the previous object
being overwritten. This is managed with null versions.

Only one null version should exist at any given time, and it is
identified in Zenko CloudServer requests and responses with the version
id “null”.

Case 1: Putting Null Versions

With respect to metadata, since the null version is overwritten by
subsequent null versions, the null version is initially stored in the
master key alone, as opposed to being stored in the master key and a new
version. Zenko CloudServer checks if versioning is suspended or has never been
configured, and sets the versionId option to '' in PUT calls to
the metadata engine when creating a new null version.

If the master version is a null version, Zenko CloudServer also sends a DELETE
call to metadata prior to the PUT, in order to clean up any pre-existing null
versions which may, in certain edge cases, have been stored as a separate
version. 1

The tables below summarize the calls to metadata and the resulting keys if
we put an object ‘foo’ twice, when versioning has not been enabled or is
suspended.

	PUT foo (first put), versionId: ''

	key

	value

	foo (null)

	A

(2A) DELETE foo (clean-up delete before second put),
versionId: <version id of master version>

	key

	value

	
	

(2B) PUT foo (second put), versionId: ''

	key

	value

	foo (null)

	B

The S3 API also sets the isNull attribute to true in the version
metadata before storing the metadata for these null versions.

	1(1,2)

	Some examples of these cases are: (1) when there is a null version
that is the second-to-latest version, and the latest version has been
deleted, causing metadata to repair the master value with the value of
the null version and (2) when putting object tag or ACL on a null
version that is the master version, as explained in “Behavior of
Object-Targeting APIs”.

Case 2: Preserving Existing Null Versions in Versioning-Enabled Bucket

Null versions are preserved when new non-null versions are created after
versioning has been enabled or re-enabled.

If the master version is the null version, the S3 API preserves the
current null version by storing it as a new key (3A) in a separate
PUT call to metadata, prior to overwriting the master version (3B).
This implies the null version may not necessarily be the latest or
master version.

To determine whether the master version is a null version, the S3 API
checks if the master version’s isNull property is set to true,
or if the versionId attribute of the master version is undefined
(indicating it is a null version that was put before bucket versioning
was configured).

Continuing the example from Case 1, if we enabled versioning and put
another object, the calls to metadata and resulting keys would resemble
the following:

(3A) PUT foo, versionId: <versionId of master version> if defined or
<non-versioned object id>

	key

	value

	foo

	B

	foo.v1 (null)

	B

(3B) PUT foo, versioning: true

	key

	value

	foo

	C

	foo.v2

	C

	foo.v1 (null)

	B

To prevent issues with concurrent requests, Zenko CloudServer ensures the null
version is stored with the same version ID by using versionId option.
Zenko CloudServer sets the versionId option to the master version’s
versionId metadata attribute value during the PUT. This creates a new
version with the same version ID of the existing null master version.

The null version’s versionId attribute may be undefined because it
was generated before the bucket versioning was configured. In that case,
a version ID is generated using the max epoch and sequence values
possible so that the null version will be properly ordered as the last
entry in a metadata listing. This value (“non-versioned object id”) is
used in the PUT call with the versionId option.

Case 3: Overwriting a Null Version That is Not Latest Version

Normally when versioning is suspended, Zenko CloudServer uses the
versionId: '' option in a PUT to metadata to create a null version.
This also overwrites an existing null version if it is the master version.

However, if there is a null version that is not the latest version,
Zenko CloudServer cannot rely on the versionId: '' option will not
overwrite the existing null version. Instead, before creating a new null
version, the Zenko CloudServer API must send a separate DELETE call to metadata
specifying the version id of the current null version for delete.

To do this, when storing a null version (3A above) before storing a new
non-null version, Zenko CloudServer records the version’s ID in the
nullVersionId attribute of the non-null version. For steps 3A and 3B above,
these are the values stored in the nullVersionId of each version’s metadata:

(3A) PUT foo, versioning: true

	key

	value

	value.nullVersionId

	foo

	B

	undefined

	foo.v1 (null)

	B

	undefined

(3B) PUT foo, versioning: true

	key

	value

	value.nullVersionId

	foo

	C

	v1

	foo.v2

	C

	v1

	foo.v1 (null)

	B

	undefined

If defined, the nullVersionId of the master version is used with the
versionId option in a DELETE call to metadata if a Put Object
request is received when versioning is suspended in a bucket.

(4A) DELETE foo, versionId: <nullVersionId of master version> (v1)

	key

	value

	foo

	C

	foo.v2

	C

Then the master version is overwritten with the new null version:

(4B) PUT foo, versionId: ''

	key

	value

	foo (null)

	D

	foo.v2

	C

The nullVersionId attribute is also used to retrieve the correct
version when the version ID “null” is specified in certain object-level
APIs, described further in the section “Null Version
Mapping”.

Specifying Versions in APIs for Putting Versions

Since Zenko CloudServer does not allow an overwrite of existing version data,
Put Object, Complete Multipart Upload and Copy Object return
400 InvalidArgument if a specific version ID is specified in the
request query, e.g. for a PUT /foo?versionId=v1 request.

PUT Example

When Zenko CloudServer receives a request to PUT an object:

	It checks first if versioning has been configured

	If it has not been configured, Zenko CloudServer proceeds to puts the new
data, puts the metadata by overwriting the master version, and proceeds to
delete any pre-existing data

If versioning has been configured, Zenko CloudServer checks the following:

Versioning Enabled

If versioning is enabled and there is existing object metadata:

	If the master version is a null version (isNull: true) or has no
version ID (put before versioning was configured):

	store the null version metadata as a new version

	create a new version and overwrite the master version

	set nullVersionId: version ID of the null version that was
stored

If versioning is enabled and the master version is not null; or there is
no existing object metadata:

	create a new version and store it, and overwrite the master version

Versioning Suspended

If versioning is suspended and there is existing object metadata:

	If the master version has no version ID:

	overwrite the master version with the new metadata (PUT versionId: '')

	delete previous object data

	If the master version is a null version:

	delete the null version using the versionId metadata attribute of the
master version (PUT versionId: <versionId of master object MD>)

	put a new null version (PUT versionId: '')

	If master is not a null version and nullVersionId is defined in
the object’s metadata:

	delete the current null version metadata and data

	overwrite the master version with the new metadata

If there is no existing object metadata, create the new null version as
the master version.

In each of the above cases, set isNull metadata attribute to true
when creating the new null version.

Behavior of Object-Targeting APIs

API methods which can target existing objects or versions, such as Get
Object, Head Object, Get Object ACL, Put Object ACL, Copy Object and
Copy Part, will perform the action on the latest version of an object if
no version ID is specified in the request query or relevant request
header (x-amz-copy-source-version-id for Copy Object and Copy Part
APIs).

Two exceptions are the Delete Object and Multi-Object Delete APIs, which
will instead attempt to create delete markers, described in the
following section, if no version ID is specified.

No versioning options are necessary to retrieve the latest version from
metadata, since the master version is stored in a key with the name of
the object. However, when updating the latest version, such as with the
Put Object ACL API, Zenko CloudServer sets the versionId option in the
PUT call to metadata to the value stored in the object metadata’s versionId
attribute. This is done in order to update the metadata both in the
master version and the version itself, if it is not a null version. 2

When a version id is specified in the request query for these APIs, e.g.
GET /foo?versionId=v1, Zenko CloudServer will attempt to decode the version
ID and perform the action on the appropriate version. To do so, the API sets
the value of the versionId option to the decoded version ID in the
metadata call.

Delete Markers

If versioning has not been configured for a bucket, the Delete Object
and Multi-Object Delete APIs behave as their standard APIs.

If versioning has been configured, Zenko CloudServer deletes object or version
data only if a specific version ID is provided in the request query, e.g.
DELETE /foo?versionId=v1.

If no version ID is provided, S3 creates a delete marker by creating a
0-byte version with the metadata attribute isDeleteMarker: true. The
S3 API will return a 404 NoSuchKey error in response to requests
getting or heading an object whose latest version is a delete maker.

To restore a previous version as the latest version of an object, the
delete marker must be deleted, by the same process as deleting any other
version.

The response varies when targeting an object whose latest version is a
delete marker for other object-level APIs that can target existing
objects and versions, without specifying the version ID.

	Get Object, Head Object, Get Object ACL, Object Copy and Copy Part
return 404 NoSuchKey.

	Put Object ACL and Put Object Tagging return
405 MethodNotAllowed.

These APIs respond to requests specifying the version ID of a delete
marker with the error 405 MethodNotAllowed, in general. Copy Part
and Copy Object respond with 400 Invalid Request.

See section “Delete Example” for a summary.

Null Version Mapping

When the null version is specified in a request with the version ID
“null”, the S3 API must use the nullVersionId stored in the latest
version to retrieve the current null version, if the null version is not
the latest version.

Thus, getting the null version is a two step process:

	Get the latest version of the object from metadata. If the latest
version’s isNull property is true, then use the latest
version’s metadata. Otherwise,

	Get the null version of the object from metadata, using the internal
version ID of the current null version stored in the latest version’s
nullVersionId metadata attribute.

DELETE Example

The following steps are used in the delete logic for delete marker
creation:

	If versioning has not been configured: attempt to delete the object

	If request is version-specific delete request: attempt to delete the
version

	otherwise, if not a version-specific delete request and versioning
has been configured:

	create a new 0-byte content-length version

	in version’s metadata, set a ‘isDeleteMarker’ property to true

	Return the version ID of any version deleted or any delete marker
created

	Set response header x-amz-delete-marker to true if a delete
marker was deleted or created

The Multi-Object Delete API follows the same logic for each of the
objects or versions listed in an xml request. Note that a delete request
can result in the creation of a deletion marker even if the object
requested to delete does not exist in the first place.

Object-level APIs which can target existing objects and versions perform
the following checks regarding delete markers:

	If not a version-specific request and versioning has been configured,
check the metadata of the latest version

	If the ‘isDeleteMarker’ property is set to true, return
404 NoSuchKey or 405 MethodNotAllowed

	If it is a version-specific request, check the object metadata of the
requested version

	If the isDeleteMarker property is set to true, return
405 MethodNotAllowed or 400 InvalidRequest

	2

	If it is a null version, this call will overwrite the null version
if it is stored in its own key (foo\0<versionId>). If the null
version is stored only in the master version, this call will both
overwrite the master version and create a new key
(foo\0<versionId>), resulting in the edge case referred to by the
previous footnote 1.

Data-metadata daemon Architecture and Operational guide

This document presents the architecture of the data-metadata daemon
(dmd) used for the community edition of Zenko CloudServer. It also provides a
guide on how to operate it.

The dmd is responsible for storing and retrieving Zenko CloudServer data and
metadata, and is accessed by Zenko CloudServer connectors through socket.io
(metadata) and REST (data) APIs.

It has been designed such that more than one Zenko CloudServer connector can
access the same buckets by communicating with the dmd. It also means that
the dmd can be hosted on a separate container or machine.

Operation

Startup

The simplest deployment is still to launch with yarn start, this will
start one instance of the Zenko CloudServer connector and will listen on the
locally bound dmd ports 9990 and 9991 (by default, see below).

The dmd can be started independently from the Zenko CloudServer by running this
command in the Zenko CloudServer directory:

yarn run start_dmd

This will open two ports:

	one is based on socket.io and is used for metadata transfers (9990 by
default)

	the other is a REST interface used for data transfers (9991 by
default)

Then, one or more instances of Zenko CloudServer without the dmd can be started
elsewhere with:

yarn run start_s3server

Configuration

Most configuration happens in config.json for Zenko CloudServer, local
storage paths can be changed where the dmd is started using environment
variables, like before: S3DATAPATH and S3METADATAPATH.

In config.json, the following sections are used to configure access
to the dmd through separate configuration of the data and metadata
access:

"metadataClient": {
 "host": "localhost",
 "port": 9990
},
"dataClient": {
 "host": "localhost",
 "port": 9991
},

To run a remote dmd, you have to do the following:

	change both "host" attributes to the IP or host name where the
dmd is run.

	Modify the "bindAddress" attributes in "metadataDaemon" and
"dataDaemon" sections where the dmd is run to accept remote
connections (e.g. "::")

Architecture

This section gives a bit more insight on how it works internally.

[image: Architecture diagram]
./images/data_metadata_daemon_arch.png

Metadata on socket.io

This communication is based on an RPC system based on socket.io events
sent by Zenko CloudServerconnectors, received by the DMD and acknowledged back
to the Zenko CloudServer connector.

The actual payload sent through socket.io is a JSON-serialized form of
the RPC call name and parameters, along with some additional information
like the request UIDs, and the sub-level information, sent as object
attributes in the JSON request.

With introduction of versioning support, the updates are now gathered in
the dmd for some number of milliseconds max, before being batched as a
single write to the database. This is done server-side, so the API is
meant to send individual updates.

Four RPC commands are available to clients: put, get, del
and createReadStream. They more or less map the parameters accepted
by the corresponding calls in the LevelUp implementation of LevelDB.
They differ in the following:

	The sync option is ignored (under the hood, puts are gathered
into batches which have their sync property enforced when they
are committed to the storage)

	Some additional versioning-specific options are supported

	createReadStream becomes asynchronous, takes an additional
callback argument and returns the stream in the second callback
parameter

Debugging the socket.io exchanges can be achieved by running the daemon
with DEBUG='socket.io*' environment variable set.

One parameter controls the timeout value after which RPC commands sent
end with a timeout error, it can be changed either:

	via the DEFAULT_CALL_TIMEOUT_MS option in
lib/network/rpc/rpc.js

	or in the constructor call of the MetadataFileClient object (in
lib/metadata/bucketfile/backend.js as callTimeoutMs.

Default value is 30000.

A specific implementation deals with streams, currently used for listing
a bucket. Streams emit "stream-data" events that pack one or more
items in the listing, and a special “stream-end” event when done.
Flow control is achieved by allowing a certain number of “in flight”
packets that have not received an ack yet (5 by default). Two options
can tune the behavior (for better throughput or getting it more robust
on weak networks), they have to be set in mdserver.js file directly,
as there is no support in config.json for now for those options:

	streamMaxPendingAck: max number of pending ack events not yet
received (default is 5)

	streamAckTimeoutMs: timeout for receiving an ack after an output
stream packet is sent to the client (default is 5000)

Data exchange through the REST data port

Data is read and written with REST semantic.

The web server recognizes a base path in the URL of /DataFile to be
a request to the data storage service.

PUT

A PUT on /DataFile URL and contents passed in the request body will
write a new object to the storage.

On success, a 201 Created response is returned and the new URL to
the object is returned via the Location header (e.g.
Location: /DataFile/50165db76eecea293abfd31103746dadb73a2074). The
raw key can then be extracted simply by removing the leading
/DataFile service information from the returned URL.

GET

A GET is simply issued with REST semantic, e.g.:

GET /DataFile/50165db76eecea293abfd31103746dadb73a2074 HTTP/1.1

A GET request can ask for a specific range. Range support is complete
except for multiple byte ranges.

DELETE

DELETE is similar to GET, except that a 204 No Content response is
returned on success.

Listing

Listing Types

We use three different types of metadata listing for various operations.
Here are the scenarios we use each for:

	‘Delimiter’ - when no versions are possible in the bucket since it is
an internally-used only bucket which is not exposed to a user.
Namely,

	to list objects in the “user’s bucket” to respond to a GET SERVICE
request and

	to do internal listings on an MPU shadow bucket to complete multipart
upload operations.

	‘DelimiterVersion’ - to list all versions in a bucket

	‘DelimiterMaster’ - to list just the master versions of objects in a
bucket

Algorithms

The algorithms for each listing type can be found in the open-source
scality/Arsenal [https://github.com/scality/Arsenal] repository, in
lib/algos/list [https://github.com/scality/Arsenal/tree/master/lib/algos/list].

Encryption

With CloudServer, there are two possible methods of at-rest encryption.
(1) We offer bucket level encryption where Scality CloudServer itself handles at-rest
encryption for any object that is in an ‘encrypted’ bucket, regardless of what
the location-constraint for the data is and
(2) If the location-constraint specified for the data is of type AWS,
you can choose to use AWS server side encryption.

Note: bucket level encryption is not available on the standard AWS
S3 protocol, so normal AWS S3 clients will not provide the option to send a
header when creating a bucket. We have created a simple tool to enable you
to easily create an encrypted bucket.

Example:

Creating encrypted bucket using our encrypted bucket tool in the bin directory

./create_encrypted_bucket.js -a accessKey1 -k verySecretKey1 -b bucketname -h localhost -p 8000

AWS backend

With real AWS S3 as a location-constraint, you have to configure the
location-constraint as follows

"awsbackend": {
 "type": "aws_s3",
 "legacyAwsBehavior": true,
 "details": {
 "serverSideEncryption": true,
 ...
 }
},

Then, every time an object is put to that data location, we pass the following
header to AWS: x-amz-server-side-encryption: AES256

Note: due to these options, it is possible to configure encryption by both
CloudServer and AWS S3 (if you put an object to a CloudServer bucket which has
the encryption flag AND the location-constraint for the data is AWS S3 with
serverSideEncryption set to true).

Add New Backend Storage To Zenko CloudServer

This set of documents aims at bootstrapping developers with Zenko’s CloudServer
module, so they can then go on and contribute features.

	Adding support for data backends not supporting the S3 API
	General configuration

	Operation of type PUT

	Operation of type GET

	Operation of type DELETE

	Operation of type HEAD

	Healthcheck

	Multipart upload (MPU)

	Add functional tests

	Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

	S3-Compatible Backends
	Adding Support in CloudServer

We always encourage our community to offer new extensions to Zenko,
and new backend support is paramount to meeting more community needs.
If that is something you want to contribute (or just do on your own
version of the cloudserver image), this is the guid to read. Please
make sure you follow our Contributing Guidelines [https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md]/.

If you need help with anything, please search our forum [https://forum.zenko.io] for more
information.

Add support for a new backend

Currently the main public cloud protocols are supported and more can
be added. There are two main types of backend: those compatible with
Amazon’s S3 protocol and those not compatible.

	Backend type

	Supported

	Active WIP

	Not started

	Private disk/fs

	x

	
	

	AWS S3

	x

	
	

	Microsoft Azure

	x

	
	

	Backblaze B2

	
	x

	

	Google Cloud

	x

	
	

	Openstack Swift

	
	
	x

Important

Should you want to request for a new backend to be
supported, please do so by opening a Github issue [https://github.com/scality/S3/issues],
and filling out the “Feature Request” section of our
template.

To add support for a new backend support to CloudServer official
repository, please follow these steps:

	familiarize yourself with our Contributing Guidelines [https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md]

	open a Github issue [https://github.com/scality/S3/issues] and fill out Feature Request form, and
specify you would like to contribute it yourself;

	wait for our core team to get back to you with an answer on whether
we are interested in taking that contribution in (and hence
committing to maintaining it over time);

	once approved, fork the repository and start your development;

	use the forum [https://forum.zenko.io] with any question you may have during the
development process;

	when you think it’s ready, let us know so that we create a feature
branch against which we’ll compare and review your code;

	open a pull request with your changes against that dedicated feature
branch;

	once that pull request gets merged, you’re done.

Tip

While we do take care of the final rebase (when we merge your feature
branch on the latest default branch), we do ask that you keep up to date with our latest default branch
until then.

Important

If we do not approve your feature request, you may of course still
work on supporting a new backend: all our “no” means is that we do not
have the resources, as part of our core development team, to maintain
this feature for the moment.

Adding support for data backends not supporting the S3 API

These backends abstract the complexity of multiple APIs to let users
work on a single common namespace across multiple clouds.

This documents aims at introducing you to the right files in
CloudServer (the Zenko stack’s subcomponent in charge of API
translation, among other things) to add support to your own backend of
choice.

General configuration

There are a number of constants and environment variables to define to support a
new data backend; here is a list and where to find them:

/constants.js

	give your backend type a name, as part of the externalBackends object;

	specify whether versioning is implemented, as part of the
versioningNotImplemented object;

/lib/Config.js

	this is where you should put common utility functions, like the ones to parse
the location object from locationConfig.json;

	make sure you define environment variables (like GCP_SERVICE_EMAIL as we’ll
use those internally for the CI to test against the real remote backend;

/lib/data/external/{backendName}Client.js

	this file is where you’ll instantiate your backend client; this should be a
class with a constructor taking the config object built in /lib/Config.js as
parameter;

	over time, you may need some utility functions which we’ve defined in the
folder /api/apiUtils, and in the file /lib/data/external/utils;

/lib/data/external/utils.js

	make sure to add options for sourceLocationConstraintType to be equal to
the name you gave your backend in /constants.js;

/lib/data/external/{BackendName}_lib/

	this folder is where you’ll put the functions needed for supporting your
backend; keep your files as atomic as possible;

/tests/locationConfig/locationConfigTests.json

	this file is where you’ll create location profiles to be used by your
functional tests;

/lib/data/locationConstraintParser.js

	this is where you’ll instantiate your client if the operation the end user
sent effectively writes to your backend; everything happens inside the
function parseLC(); you should add a condition that executes if
locationObj.type is the name of your backend (that you defined in
constants.js), and instantiates a client of yours. See pseudocode below,
assuming location type name is ztore:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 (...) //<1>
 const ZtoreClient = require('./external/ZtoreClient');
 const { config } = require('../Config'); //<1>

 function parseLC(){ //<1>
 (...) //<1>
 Object.keys(config.locationConstraints).forEach(location => { //<1>
 const locationObj = config.locationConstraints[location]; //<1>
 (...) //<1>
 if (locationObj.type === 'ztore' {
 const ztoreEndpoint = config.getZtoreEndpoint(location);
 const ztoreCredentials = config.getZtoreCredentials(location); //<2>
 clients[location] = new ZtoreClient({
 ztoreEndpoint,
 ztoreCredentials,
 ztoreBucketname: locationObj.details.ztoreBucketName,
 bucketMatch: locationObj.details.BucketMatch,
 dataStoreName: location,
 }); //<3>
 clients[location].clientType = 'ztore';
 });
 (...) //<1>
 });
 }

	Code that is already there

	You may need more utility functions depending on your backend specs

	You may have more fields required in your constructor object depending on
your backend specs

Operation of type PUT

PUT routes are usually where people get started, as it’s the easiest to check!
Simply go on your remote backend console and you’ll be able to see whether your
object actually went up in the cloud…

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your put() function is also called
put(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
put(stream, size, keyContext, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:
//TODO: generate this from jsdoc

	stream: the stream of data you want to put in the cloud; if you’re
unfamiliar with node.js streams, we suggest you start training, as we use
them a lot !

	size: the size of the object you’re trying to put;

	keyContext: an object with metadata about the operation; common entries are
namespace, buckerName, owner, cipherBundle, and tagging; if these
are not sufficient for your integration, contact us to get architecture
validation before adding new entries;

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your PUT operation, and
then import then in /lib/data/external/{BackendName}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/put/put{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()
function returning ajusted keys[] to your tests.

Operation of type GET

GET routes are easy to test after PUT routes are implemented, hence why we’re
covering them second.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your get() function is also called
get(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
get(objectGetInfo, range, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:

//TODO: generate this from jsdoc

	objectGetInfo: a dictionary with two entries: key, the object key in the
data store, and client, the data store name;

	range: the range of bytes you will get, for “get-by-range” operations (we
recommend you do simple GETs first, and then look at this);

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your GET operation, and
then import then in /lib/data/external/{{BackendName}}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note

You should need this section if you have followed the tutorial in order
(that is, if you have covered the PUT operation already)

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()

Operation of type DELETE

DELETE routes are easy to test after PUT routes are implemented, and they are
similar to GET routes in our implementation, hence why we’re covering them
third.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your delete() function is also called
delete(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
delete(objectGetInfo, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:

	//TODO: generate this from jsdoc

	
	objectGetInfo: a dictionary with two entries: key, the object key in the
data store, and client, the data store name;

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your DELETE operation,
and then import then in /lib/data/external/{{BackendName}}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/delete/delete{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note

You should need this section if you have followed the
tutorial in order (that is, if you have covered the PUT operation
already)

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()

Operation of type HEAD

HEAD routes are very similar to DELETE routes in our implementation, hence why
we’re covering them fourth.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your head() function is also called
head(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
head(objectGetInfo, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:

// TODO:: generate this from jsdoc

	objectGetInfo: a dictionary with two entries: key, the object key in the
data store, and client, the data store name;

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your HEAD operation,
and then import then in /lib/data/external/{BackendName}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note

You should need this section if you have followed the tutorial in order
(that is, if you have covered the PUT operation already)

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()

Healthcheck

Healtchecks are used to make sure failure to write to a remote cloud is due to
a problem on that remote cloud, an not on Zenko’s side.
This is usually done by trying to create a bucket that already exists, and
making sure you get the expected answer.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your healthcheck() function is called
checkExternalBackend() and it’s defined in
/lib/data/multipleBackendGateway.js; you will need to add your own;

	your healtcheck function should get location as a parameter, which is an
object comprising:`

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/{backendName}_create_bucket.js

	this is where you should write the function performing the actual bucket
creation;

/lib/data/external/{backendName}_lib/utils.js

	add an object named per your backend’s name to the backendHealth dictionary,
with proper response and time entries;

lib/data/multipleBackendGateway.js

	edit the healthcheck function to add your location’s array, and call your
healthcheck; see pseudocode below for a sample implementation, provided your
backend name is ztore

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 (...) //<1>

 healthcheck: (flightCheckOnStartUp, log, callback) => { //<1>
 (...) //<1>
 const ztoreArray = []; //<2>
 async.each(Object.keys(clients), (location, cb) => { //<1>
 (...) //<1>
 } else if (client.clientType === 'ztore' {
 ztoreArray.push(location); //<3>
 return cb();
 }
 (...) //<1>
 multBackendResp[location] = { code: 200, message: 'OK' }; //<1>
 return cb();
 }, () => { //<1>
 async.parallel([
 (...) //<1>
 next => checkExternalBackend(//<4>
 clients, ztoreArray, 'ztore', flightCheckOnStartUp,
 externalBackendHealthCheckInterval, next),
] (...) //<1>
 });
 (...) //<1>
 });
 }

	Code that is already there

	The array that will store all locations of type ‘ztore’

	Where you add locations of type ‘ztore’ to the array

	Where you actually call the healthcheck function on all ‘ztore’ locations

Multipart upload (MPU)

This is the final part to supporting a new backend! MPU is far from
the easiest subject, but you’ve come so far it shouldn’t be a problem.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

You’ll be creating four functions with template signatures:

	createMPU(Key, metaHeaders, bucketName, websiteRedirectHeader, contentType,
cacheControl, contentDisposition, contentEncoding, log, callback) will
initiate the multi part upload process; now, here, all parameters are
metadata headers except for:

	Key, the key id for the final object (collection of all parts);

	bucketName, the name of the bucket to which we will do an MPU;

	log, the logger;

	
	uploadPart(request, streamingV4Params, stream, size, key, uploadId, partNumber, bucketName, log, callback)

	will be called for each part; the parameters can be explicited as follow:

	request, the request object for putting the part;

	streamingV4Params, parameters for auth V4 parameters against S3;

	stream, the node.js readable stream used to put the part;

	size, the size of the part;

	key, the key of the object;

	uploadId, multipart upload id string;

	partNumber, the number of the part in this MPU (ordered);

	bucketName, the name of the bucket to which we will do an MPU;

	log, the logger;

	
	completeMPU(jsonList, mdInfo, key, uploadId, bucketName, log, callback) will

	end the MPU process once all parts are uploaded; parameters can be explicited
as follows:

	jsonList, user-sent list of parts to include in final mpu object;

	mdInfo, object containing 3 keys: storedParts, mpuOverviewKey, and
splitter;

	key, the key of the object;

	uploadId, multipart upload id string;

	bucketName, name of bucket;

	log, logger instance:

	abortMPU(key, uploadId, bucketName, log, callback) will handle errors, and
make sure that all parts that may have been uploaded will be deleted if the
MPU ultimately fails; the parameters are:

	key, the key of the object;

	uploadId, multipart upload id string;

	bucketName, name of bucket;

	log, logger instance.

/lib/api/objectPutPart.js

	you’ll need to add your backend type in appropriate sections (simply look for
other backends already implemented).

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your MPU operations,
and then import then in /lib/data/external/{BackendName}Client.js, to keep
your code clean;

lib/data/multipleBackendGateway.js

	edit the createMPU function to add your location type, and call your
createMPU(); see pseudocode below for a sample implementation, provided your
backend name is ztore

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 (...) //<1>
 createMPU:(key, metaHeaders, bucketName, websiteRedirectHeader, //<1>
 location, contentType, cacheControl, contentDisposition,
 contentEncoding, log, cb) => {
 const client = clients[location]; //<1>
 if (client.clientType === 'aws_s3') { //<1>
 return client.createMPU(key, metaHeaders, bucketName,
 websiteRedirectHeader, contentType, cacheControl,
 contentDisposition, contentEncoding, log, cb);
 } else if (client.clientType === 'ztore') { //<2>
 return client.createMPU(key, metaHeaders, bucketName,
 websiteRedirectHeader, contentType, cacheControl,
 contentDisposition, contentEncoding, log, cb);
 }
 return cb();
 };
 (...) //<1>

	Code that is already there

	Where the createMPU() of your client is actually called

Add functional tests

	tests/functional/aws-node-sdk/test/multipleBackend/initMPU/{BackendName}InitMPU.js

	tests/functional/aws-node-sdk/test/multipleBackend/listParts/{BackendName}ListPart.js

	tests/functional/aws-node-sdk/test/multipleBackend/mpuAbort/{BackendName}AbortMPU.js

	tests/functional/aws-node-sdk/test/multipleBackend/mpuComplete/{BackendName}CompleteMPU.js

	tests/functional/aws-node-sdk/test/multipleBackend/mpuParts/{BackendName}UploadPart.js

Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

This can only be done by our core developers’ team. Once your backend
integration is merged, you may open a feature request on the
Zenko repository [https://www.github.com/scality/Zenko/issues/new], and we will
get back to you after we evaluate feasability and maintainability.

S3-Compatible Backends

Adding Support in CloudServer

This is the easiest case for backend support integration: there is nothing to do
but configuration! Follow the steps described in our
Using Public Clouds as data backends and make sure you:

	set details.awsEndpoint to your storage provider endpoint;

	use details.credentials and not details.credentialsProfile to set your
credentials for that S3-compatible backend.

For example, if you’re using a Wasabi bucket as a backend, then your region
definition for that backend will look something like:

"wasabi-bucket-zenkobucket": {
"type": "aws_s3",
"legacyAwsBehavior": true,
"details": {
"awsEndpoint": "s3.wasabisys.com",
"bucketName": "zenkobucket",
"bucketMatch": true,
"credentials": {
"accessKey": "\\{YOUR_WASABI_ACCESS_KEY}",
"secretKey": "\\{YOUR_WASABI_SECRET_KEY}"
}
}
},

Adding Support in Zenko Orbit

This can only be done by our core developpers’ team. If that’s what you’re
after, open a feature request on the Zenko repository [https://www.github.com/scality/Zenko/issues/new], and we will
get back to you after we evaluate feasability and maintainability.

Add A New Backend

Supporting all possible public cloud storage APIs is CloudServer’s
ultimate goal. As an open source project, contributions are welcome.

The first step is to get familiar with building a custom Docker image
for CloudServer.

Build a Custom Docker Image

Clone Zenko’s CloudServer, install all dependencies and start the
service:

$ git clone https://github.com/scality/cloudserver
$ cd cloudserver
$ yarn install
$ yarn start

Tip

Some optional dependencies may fail, resulting in you seeing yarn
WARN messages; these can safely be ignored. Refer to the User
documentation for all available options.

Build the Docker image:

docker build . -t
{{YOUR_DOCKERHUB_ACCOUNT}}/cloudserver:{{OPTIONAL_VERSION_TAG}}

Push the newly created Docker image to your own hub:

docker push
{{YOUR_DOCKERHUB_ACCOUNT}}/cloudserver:{{OPTIONAL_VERSION_TAG}}

Note

To perform this last operation, you need to be authenticated with DockerHub

There are two main types of backend you could want Zenko to support:

== link:S3_COMPATIBLE_BACKENDS.adoc[S3 compatible data backends]

== link:NON_S3_COMPATIBLE_BACKENDS.adoc[Data backends using another protocol than the S3 protocol]

Adding support for data backends not supporting the S3 API

These backends abstract the complexity of multiple APIs to let users
work on a single common namespace across multiple clouds.

This documents aims at introducing you to the right files in
CloudServer (the Zenko stack’s subcomponent in charge of API
translation, among other things) to add support to your own backend of
choice.

General configuration

There are a number of constants and environment variables to define to support a
new data backend; here is a list and where to find them:

/constants.js

	give your backend type a name, as part of the externalBackends object;

	specify whether versioning is implemented, as part of the
versioningNotImplemented object;

/lib/Config.js

	this is where you should put common utility functions, like the ones to parse
the location object from locationConfig.json;

	make sure you define environment variables (like GCP_SERVICE_EMAIL as we’ll
use those internally for the CI to test against the real remote backend;

/lib/data/external/{backendName}Client.js

	this file is where you’ll instantiate your backend client; this should be a
class with a constructor taking the config object built in /lib/Config.js as
parameter;

	over time, you may need some utility functions which we’ve defined in the
folder /api/apiUtils, and in the file /lib/data/external/utils;

/lib/data/external/utils.js

	make sure to add options for sourceLocationConstraintType to be equal to
the name you gave your backend in /constants.js;

/lib/data/external/{BackendName}_lib/

	this folder is where you’ll put the functions needed for supporting your
backend; keep your files as atomic as possible;

/tests/locationConfig/locationConfigTests.json

	this file is where you’ll create location profiles to be used by your
functional tests;

/lib/data/locationConstraintParser.js

	this is where you’ll instantiate your client if the operation the end user
sent effectively writes to your backend; everything happens inside the
function parseLC(); you should add a condition that executes if
locationObj.type is the name of your backend (that you defined in
constants.js), and instantiates a client of yours. See pseudocode below,
assuming location type name is ztore:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 (...) //<1>
 const ZtoreClient = require('./external/ZtoreClient');
 const { config } = require('../Config'); //<1>

 function parseLC(){ //<1>
 (...) //<1>
 Object.keys(config.locationConstraints).forEach(location => { //<1>
 const locationObj = config.locationConstraints[location]; //<1>
 (...) //<1>
 if (locationObj.type === 'ztore' {
 const ztoreEndpoint = config.getZtoreEndpoint(location);
 const ztoreCredentials = config.getZtoreCredentials(location); //<2>
 clients[location] = new ZtoreClient({
 ztoreEndpoint,
 ztoreCredentials,
 ztoreBucketname: locationObj.details.ztoreBucketName,
 bucketMatch: locationObj.details.BucketMatch,
 dataStoreName: location,
 }); //<3>
 clients[location].clientType = 'ztore';
 });
 (...) //<1>
 });
 }

	Code that is already there

	You may need more utility functions depending on your backend specs

	You may have more fields required in your constructor object depending on
your backend specs

Operation of type PUT

PUT routes are usually where people get started, as it’s the easiest to check!
Simply go on your remote backend console and you’ll be able to see whether your
object actually went up in the cloud…

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your put() function is also called
put(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
put(stream, size, keyContext, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:
//TODO: generate this from jsdoc

	stream: the stream of data you want to put in the cloud; if you’re
unfamiliar with node.js streams, we suggest you start training, as we use
them a lot !

	size: the size of the object you’re trying to put;

	keyContext: an object with metadata about the operation; common entries are
namespace, buckerName, owner, cipherBundle, and tagging; if these
are not sufficient for your integration, contact us to get architecture
validation before adding new entries;

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your PUT operation, and
then import then in /lib/data/external/{BackendName}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/put/put{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()
function returning ajusted keys[] to your tests.

Operation of type GET

GET routes are easy to test after PUT routes are implemented, hence why we’re
covering them second.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your get() function is also called
get(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
get(objectGetInfo, range, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:

//TODO: generate this from jsdoc

	objectGetInfo: a dictionary with two entries: key, the object key in the
data store, and client, the data store name;

	range: the range of bytes you will get, for “get-by-range” operations (we
recommend you do simple GETs first, and then look at this);

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your GET operation, and
then import then in /lib/data/external/{{BackendName}}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note

You should need this section if you have followed the tutorial in order
(that is, if you have covered the PUT operation already)

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()

Operation of type DELETE

DELETE routes are easy to test after PUT routes are implemented, and they are
similar to GET routes in our implementation, hence why we’re covering them
third.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your delete() function is also called
delete(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
delete(objectGetInfo, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:

	//TODO: generate this from jsdoc

	
	objectGetInfo: a dictionary with two entries: key, the object key in the
data store, and client, the data store name;

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your DELETE operation,
and then import then in /lib/data/external/{{BackendName}}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/delete/delete{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note

You should need this section if you have followed the
tutorial in order (that is, if you have covered the PUT operation
already)

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()

Operation of type HEAD

HEAD routes are very similar to DELETE routes in our implementation, hence why
we’re covering them fourth.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your head() function is also called
head(), and it’s defined in /lib/data/multipleBackendGateway.js;

	define a function with signature like
head(objectGetInfo, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends:

// TODO:: generate this from jsdoc

	objectGetInfo: a dictionary with two entries: key, the object key in the
data store, and client, the data store name;

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your HEAD operation,
and then import then in /lib/data/external/{BackendName}Client.js, to keep
your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

	every contribution should come with thorough functional tests, showing
nominal context gives expected behaviour, and error cases are handled in a way
that is standard with the backend (including error messages and code);

	the ideal setup is if you simulate your backend locally, so as not to be
subjected to network flakiness in the CI; however, we know there might not be
mockups available for every client; if that is the case of your backend, you
may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note

You should need this section if you have followed the tutorial in order
(that is, if you have covered the PUT operation already)

	where you’ll define a constant for your backend location matching your
/tests/locationConfig/locationConfigTests.json

	depending on your backend, the sample keys[] and associated made up objects
may not work for you (if your backend’s key format is different, for example);
if that is the case, you should add a custom utils.get{{BackendName}}keys()

Healthcheck

Healtchecks are used to make sure failure to write to a remote cloud is due to
a problem on that remote cloud, an not on Zenko’s side.
This is usually done by trying to create a bucket that already exists, and
making sure you get the expected answer.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

	the function that is going to call your healthcheck() function is called
checkExternalBackend() and it’s defined in
/lib/data/multipleBackendGateway.js; you will need to add your own;

	your healtcheck function should get location as a parameter, which is an
object comprising:`

	reqUids: the request unique ID used for logging;

	callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/{backendName}_create_bucket.js

	this is where you should write the function performing the actual bucket
creation;

/lib/data/external/{backendName}_lib/utils.js

	add an object named per your backend’s name to the backendHealth dictionary,
with proper response and time entries;

lib/data/multipleBackendGateway.js

	edit the healthcheck function to add your location’s array, and call your
healthcheck; see pseudocode below for a sample implementation, provided your
backend name is ztore

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 (...) //<1>

 healthcheck: (flightCheckOnStartUp, log, callback) => { //<1>
 (...) //<1>
 const ztoreArray = []; //<2>
 async.each(Object.keys(clients), (location, cb) => { //<1>
 (...) //<1>
 } else if (client.clientType === 'ztore' {
 ztoreArray.push(location); //<3>
 return cb();
 }
 (...) //<1>
 multBackendResp[location] = { code: 200, message: 'OK' }; //<1>
 return cb();
 }, () => { //<1>
 async.parallel([
 (...) //<1>
 next => checkExternalBackend(//<4>
 clients, ztoreArray, 'ztore', flightCheckOnStartUp,
 externalBackendHealthCheckInterval, next),
] (...) //<1>
 });
 (...) //<1>
 });
 }

	Code that is already there

	The array that will store all locations of type ‘ztore’

	Where you add locations of type ‘ztore’ to the array

	Where you actually call the healthcheck function on all ‘ztore’ locations

Multipart upload (MPU)

This is the final part to supporting a new backend! MPU is far from
the easiest subject, but you’ve come so far it shouldn’t be a problem.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

You’ll be creating four functions with template signatures:

	createMPU(Key, metaHeaders, bucketName, websiteRedirectHeader, contentType,
cacheControl, contentDisposition, contentEncoding, log, callback) will
initiate the multi part upload process; now, here, all parameters are
metadata headers except for:

	Key, the key id for the final object (collection of all parts);

	bucketName, the name of the bucket to which we will do an MPU;

	log, the logger;

	
	uploadPart(request, streamingV4Params, stream, size, key, uploadId, partNumber, bucketName, log, callback)

	will be called for each part; the parameters can be explicited as follow:

	request, the request object for putting the part;

	streamingV4Params, parameters for auth V4 parameters against S3;

	stream, the node.js readable stream used to put the part;

	size, the size of the part;

	key, the key of the object;

	uploadId, multipart upload id string;

	partNumber, the number of the part in this MPU (ordered);

	bucketName, the name of the bucket to which we will do an MPU;

	log, the logger;

	
	completeMPU(jsonList, mdInfo, key, uploadId, bucketName, log, callback) will

	end the MPU process once all parts are uploaded; parameters can be explicited
as follows:

	jsonList, user-sent list of parts to include in final mpu object;

	mdInfo, object containing 3 keys: storedParts, mpuOverviewKey, and
splitter;

	key, the key of the object;

	uploadId, multipart upload id string;

	bucketName, name of bucket;

	log, logger instance:

	abortMPU(key, uploadId, bucketName, log, callback) will handle errors, and
make sure that all parts that may have been uploaded will be deleted if the
MPU ultimately fails; the parameters are:

	key, the key of the object;

	uploadId, multipart upload id string;

	bucketName, name of bucket;

	log, logger instance.

/lib/api/objectPutPart.js

	you’ll need to add your backend type in appropriate sections (simply look for
other backends already implemented).

/lib/data/external/{backendName}_lib/

	this is where you should put all utility functions for your MPU operations,
and then import then in /lib/data/external/{BackendName}Client.js, to keep
your code clean;

lib/data/multipleBackendGateway.js

	edit the createMPU function to add your location type, and call your
createMPU(); see pseudocode below for a sample implementation, provided your
backend name is ztore

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 (...) //<1>
 createMPU:(key, metaHeaders, bucketName, websiteRedirectHeader, //<1>
 location, contentType, cacheControl, contentDisposition,
 contentEncoding, log, cb) => {
 const client = clients[location]; //<1>
 if (client.clientType === 'aws_s3') { //<1>
 return client.createMPU(key, metaHeaders, bucketName,
 websiteRedirectHeader, contentType, cacheControl,
 contentDisposition, contentEncoding, log, cb);
 } else if (client.clientType === 'ztore') { //<2>
 return client.createMPU(key, metaHeaders, bucketName,
 websiteRedirectHeader, contentType, cacheControl,
 contentDisposition, contentEncoding, log, cb);
 }
 return cb();
 };
 (...) //<1>

	Code that is already there

	Where the createMPU() of your client is actually called

Add functional tests

	tests/functional/aws-node-sdk/test/multipleBackend/initMPU/{BackendName}InitMPU.js

	tests/functional/aws-node-sdk/test/multipleBackend/listParts/{BackendName}ListPart.js

	tests/functional/aws-node-sdk/test/multipleBackend/mpuAbort/{BackendName}AbortMPU.js

	tests/functional/aws-node-sdk/test/multipleBackend/mpuComplete/{BackendName}CompleteMPU.js

	tests/functional/aws-node-sdk/test/multipleBackend/mpuParts/{BackendName}UploadPart.js

Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

This can only be done by our core developers’ team. Once your backend
integration is merged, you may open a feature request on the
Zenko repository [https://www.github.com/scality/Zenko/issues/new], and we will
get back to you after we evaluate feasability and maintainability.

S3-Compatible Backends

Adding Support in CloudServer

This is the easiest case for backend support integration: there is nothing to do
but configuration! Follow the steps described in our
Using Public Clouds as data backends and make sure you:

	set details.awsEndpoint to your storage provider endpoint;

	use details.credentials and not details.credentialsProfile to set your
credentials for that S3-compatible backend.

For example, if you’re using a Wasabi bucket as a backend, then your region
definition for that backend will look something like:

"wasabi-bucket-zenkobucket": {
"type": "aws_s3",
"legacyAwsBehavior": true,
"details": {
"awsEndpoint": "s3.wasabisys.com",
"bucketName": "zenkobucket",
"bucketMatch": true,
"credentials": {
"accessKey": "\\{YOUR_WASABI_ACCESS_KEY}",
"secretKey": "\\{YOUR_WASABI_SECRET_KEY}"
}
}
},

Adding Support in Zenko Orbit

This can only be done by our core developpers’ team. If that’s what you’re
after, open a feature request on the Zenko repository [https://www.github.com/scality/Zenko/issues/new], and we will
get back to you after we evaluate feasability and maintainability.

Index

Metadata Search Documentation

Description

This feature enables metadata search to be performed on the metadata of objects
stored in Zenko.

Requirements

	MongoDB

Design

The Metadata Search feature expands on the existing GET Bucket S3 API by
enabling users to conduct metadata searches by adding the custom Zenko query
string parameter, search. The search parameter is structured as a pseudo
SQL WHERE clause, and supports basic SQL operators. For example:
"A=1 AND B=2 OR C=3" (complex queries can be built using nesting
operators, (and)).

The search process is as follows:

	Zenko receives a GET request.

regular getBucket request
GET /bucketname HTTP/1.1
Host: 127.0.0.1:8000
Date: Wed, 18 Oct 2018 17:50:00 GMT
Authorization: authorization string

getBucket versions request
GET /bucketname?versions HTTP/1.1
Host: 127.0.0.1:8000
Date: Wed, 18 Oct 2018 17:50:00 GMT
Authorization: authorization string

search getBucket request
GET /bucketname?search=key%3Dsearch-item HTTP/1.1
Host: 127.0.0.1:8000
Date: Wed, 18 Oct 2018 17:50:00 GMT
Authorization: authorization string

	If the request does not contain the search query parameter, Zenko performs
a normal bucket listing and returns an XML result containing the list of
objects.

	If the request does contain the search query parameter, Zenko parses and
validates the search string.

	If the search string is invalid, Zenko returns an InvalidArgument error.

<?xml version=\"1.0\" encoding=\"UTF-8\"?>
<Error>
 <Code>InvalidArgument</Code>
 <Message>Invalid sql where clause sent as search query</Message>
 <Resource></Resource>
 <RequestId>d1d6afc64345a8e1198e</RequestId>
</Error>

	If the search string is valid, Zenko parses it and generates an abstract
syntax tree (AST). The AST is then passed to the MongoDB backend to be
used as the query filter for retrieving objects from a bucket that
satisfies the requested search conditions. Zenko parses the filtered
results and returns them as the response.

Metadata search results have the same structure as a GET Bucket response:

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>bucketname</Name>
 <Prefix/>
 <Marker/>
 <MaxKeys>1000</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <Contents>
 <Key>objectKey</Key>
 <LastModified>2018-04-19T18:31:49.426Z</LastModified>
 <ETag>"d41d8cd98f00b204e9800998ecf8427e"</ETag>
 <Size>0</Size>
 <Owner>
 <ID>79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be</ID>
 <DisplayName>Bart</DisplayName>
 </Owner>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
 <Contents>
 ...
 </Contents>
</ListBucketResult>

Performing Metadata Searches with Zenko

You can perform metadata searches by:

	Using the search_bucket tool in the
Scality/S3 [https://github.com/scality/S3] GitHub repository.

	Creating a signed HTTP request to Zenko in your preferred programming
language.

Using the S3 Tool

After cloning the Scality/S3 [https://github.com/scality/S3] GitHub repository
and installing the necessary dependencies, run the following command in the S3
project’s root directory to access the search tool:

node bin/search_bucket

This generates the following output:

Usage: search_bucket [options]

Options:

 -V, --version output the version number
 -a, --access-key <accessKey> Access key id
 -k, --secret-key <secretKey> Secret access key
 -b, --bucket <bucket> Name of the bucket
 -q, --query <query> Search query
 -h, --host <host> Host of the server
 -p, --port <port> Port of the server
 -s --ssl
 -v, --verbose
 -h, --help output usage information

In the following examples, Zenko Server is accessible on endpoint
http://127.0.0.1:8000 and contains the bucket zenkobucket.

search for objects with metadata "blue"
node bin/search_bucket -a accessKey1 -k verySecretKey1 -b zenkobucket \
 -q "x-amz-meta-color=blue" -h 127.0.0.1 -p 8000

search for objects tagged with "type=color"
node bin/search_bucket -a accessKey1 -k verySecretKey1 -b zenkobucket \
 -q "tags.type=color" -h 127.0.0.1 -p 8000

Coding Examples

Search requests can be also performed by making HTTP requests authenticated
with one of the AWS Signature schemes: version 2 or version 4. For more about authentication scheme, see:

	https://docs.aws.amazon.com/general/latest/gr/signature-version-2.html

	http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

	http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

You can also view examples for making requests with Auth V4 in various
languages here.

Specifying Metadata Fields

To search system metadata headers:

{system-metadata-key}{supported SQL op}{search value}
example
key = blueObject
size > 0
key LIKE "blue.*"

To search custom user metadata:

metadata must be prefixed with "x-amz-meta-"
x-amz-meta-{user-metadata-key}{supported SQL op}{search value}

example
x-amz-meta-color = blue
x-amz-meta-color != red
x-amz-meta-color LIKE "b.*"

To search tags:

tag searches must be prefixed with "tags."
tags.{tag-key}{supported SQL op}{search value}
example
tags.type = color

Examples queries:

searching for objects with custom metadata "color"=blue" and are tagged
"type"="color"

tags.type="color" AND x-amz-meta-color="blue"

searching for objects with the object key containing the substring "blue"
or (custom metadata "color"=blue" and are tagged "type"="color")

key LIKE '.*blue.*' OR (x-amz-meta-color="blue" AND tags.type="color")

Differences from SQL

Zenko metadata search queries are similar to SQL-query WHERE clauses, but
differ in that:

	They follow the PCRE format

	They do not require values with hyphens to be enclosed in
backticks, :code:(`)

SQL query
`x-amz-meta-search-item` = `ice-cream-cone`

MD Search query
x-amz-meta-search-item = ice-cream-cone

	Search queries do not support all SQL operators.

Supported SQL operators:
=, <, >, <=, >=, !=, AND, OR, LIKE, <>

Unsupported SQL operators:
NOT, BETWEEN, IN, IS, +, -, %, ^, /, *, !

Using Regular Expressions in Metadata Search

Regular expressions in Zenko metadata search differ from SQL in the following
ways:

	Wildcards are represented with .* instead of %.

	Regex patterns must be wrapped in quotes. Failure to do this can lead to
misinterpretation of patterns.

	As with PCRE, regular expressions can be entered in either the
/pattern/ syntax or as the pattern itself if regex options are
not required.

Example regular expressions:

search for strings containing word substring "helloworld"
 ".*helloworld.*"
 "/.*helloworld.*/"
 "/.*helloworld.*/i"

 _images/azure-console-successful-put.png
A Upload) Refresh [Delete container = Container properties B Access policy

Location: zenkontainer

O lsearch blobs by prefix (case-sensitive)

NAME MODIFIED BLOB TYPE size LEASE STATE

[testput 10/24/2017, 43845 PM Block blob 3308 Available

_images/data_metadata_daemon_arch.png
S3 connector A

S3 connector B

REST (data blobs)

_images/aws-console-successful-put.png
AmazonS3 > zenkobucket

overview -_

Q Type a prefix and press Enter to search. Press ESC to clear.

2. Upload + Create folder More v Versions nﬂ Show

[J Name

0 D tesiput

Last modified

Oct 24, 2017 2:51:01 PM

EU (Frankfurt)

Viewing 1to 1

Storage class

Standard

Viewing 1to 1

_images/aws-console-versioning-enabled.png
AmazonS3 > zenkobucket

Versioning

Keep multiple versions of an object in
the same bucket.

Leam more

© Enabled

Advanced settings

Server access logging

Set up access log records that provide
details about access requests.

Leam more

Static website hosting

Host a static website, which does not
require server-side technologies.

Leam more

Object-level logging

Record object-level API activity using
the CloudTrail data events feature

(additional cost).
Learn more

Tags

Use tags to track your cost against
projects or other criteria.

Leam more

Transfer acceleration

Enable fast, easy and secure transfers
of files to and from your bucket.

Leam more

Events

Receive notifications when specific
events occur in your bucket.

Leam more

Requester pays

The requester (instead of the bucket
owner) will pay for requests and data

transfer.
Learn more

_static/comment-bright.png

_images/scality-cloudserver-logo.png
& cloudserver

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Scality Zenko CloudServer

 		
 Contributing

 		
 Need help?

 		
 Got an idea? Get started!

 		
 Don’t write code? There are other ways to help!

 		
 Getting Started

 		
 Dependencies

 		
 Installation

 		
 Running CloudServer with a File Backend

 		
 Running CloudServer with Multiple Data Backends

 		
 Run CloudServer with an In-Memory Backend

 		
 Run CloudServer for Continuous Integration Testing or in Production with Docker

 		
 Testing

 		
 Running Functional Tests Locally

 		
 Configuration

 		
 Location Configuration

 		
 Endpoints

 		
 Setting Your Own Access and Secret Key Pairs

 		
 Using SSL

 		
 Using Public Clouds as data backends

 		
 Introduction

 		
 AWS S3 as a data backend

 		
 From the AWS S3 Console (or any AWS S3 CLI tool)

 		
 From the CloudServer repository

 		
 Start the server with the ability to write to AWS S3

 		
 Run the server as a docker container with the ability to write to AWS S3

 		
 Testing: put an object to AWS S3 using CloudServer

 		
 Troubleshooting

 		
 Microsoft Azure as a data backend

 		
 From the MS Azure Console

 		
 From the CloudServer repository

 		
 Start the server with the ability to write to MS Azure

 		
 Run the server as a docker container with the ability to write to MS Azure

 		
 Testing: put an object to MS Azure using CloudServer

 		
 Troubleshooting

 		
 For any data backend

 		
 From the CloudServer repository

 		
 Clients

 		
 GUI

 		
 Cyberduck

 		
 Cloud Explorer

 		
 CloudBerry Lab

 		
 Command Line Tools

 		
 s3curl

 		
 aws-cli

 		
 s3cmd

 		
 rclone

 		
 JavaScript

 		
 AWS JavaScript SDK

 		
 JAVA

 		
 AWS JAVA SDK

 		
 Ruby

 		
 AWS SDK for Ruby - Version 2

 		
 fog

 		
 Python

 		
 boto2

 		
 boto3

 		
 PHP

 		
 AWS PHP SDK v3

 		
 Docker

 		
 Environment Variables

 		
 S3DATA

 		
 S3BACKEND

 		
 ENDPOINT

 		
 SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY

 		
 LOG_LEVEL

 		
 SSL

 		
 LISTEN_ADDR

 		
 DATA_HOST and METADATA_HOST

 		
 REDIS_HOST

 		
 REDIS_PORT

 		
 Tunables and Setup Tips

 		
 Using Docker Volumes

 		
 Adding, Modifying, or Deleting Accounts or Credentials

 		
 Specifying a Host Name

 		
 Running as an Unprivileged User

 		
 Continuous Integration with a Docker-Hosted CloudServer

 		
 In Production with a Docker-Hosted CloudServer

 		
 Integrations

 		
 High Availability

 		
 Set Up Docker Swarm on Clients on a Server

 		
 Testing the High-Availability CloudServer

 		
 Troubleshooting

 		
 Off you go!

 		
 S3FS

 		
 Deploying Zenko CloudServer with SSL

 		
 s3fs Setup

 		
 Duplicity

 		
 Installing Duplicity and its Dependencies

 		
 Architecture

 		
 Versioning

 		
 AWS S3 Bucket Versioning

 		
 Implementation of Bucket Versioning in Zenko CloudServer

 		
 Implementation of Bucket Versioning in Metadata

 		
 Implementation of Bucket Versioning in API

 		
 Data-metadata daemon Architecture and Operational guide

 		
 Operation

 		
 Architecture

 		
 Listing

 		
 Listing Types

 		
 Algorithms

 		
 Encryption

 		
 Example:

 		
 AWS backend

 		
 Add New Backend Storage To Zenko CloudServer

 		
 Adding support for data backends not supporting the S3 API

 		
 General configuration

 		
 Operation of type PUT

 		
 Operation of type GET

 		
 Operation of type DELETE

 		
 Operation of type HEAD

 		
 Healthcheck

 		
 Multipart upload (MPU)

 		
 Add functional tests

 		
 Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

 		
 S3-Compatible Backends

 		
 Adding Support in CloudServer

 		
 Add support for a new backend

 		
 Add A New Backend

 		
 Build a Custom Docker Image

 		
 Adding support for data backends not supporting the S3 API

 		
 General configuration

 		
 /constants.js

 		
 /lib/Config.js

 		
 /lib/data/external/{backendName}Client.js

 		
 /lib/data/external/utils.js

 		
 /lib/data/external/{BackendName}_lib/

 		
 /tests/locationConfig/locationConfigTests.json

 		
 /lib/data/locationConstraintParser.js

 		
 Operation of type PUT

 		
 /lib/data/external/{BackendName}Client.js

 		
 /lib/data/external/{backendName}_lib/

 		
 tests/functional/aws-node-sdk/test/multipleBackend/put/put{BackendName}js

 		
 tests/functional/aws-node-sdk/test/multipleBackend/utils.js

 		
 Operation of type GET

 		
 /lib/data/external/{BackendName}Client.js

 		
 /lib/data/external/{backendName}_lib/

 		
 tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

 		
 tests/functional/aws-node-sdk/test/multipleBackend/utils.js

 		
 Operation of type DELETE

 		
 /lib/data/external/{BackendName}Client.js

 		
 /lib/data/external/{backendName}_lib/

 		
 tests/functional/aws-node-sdk/test/multipleBackend/delete/delete{BackendName}js

 		
 tests/functional/aws-node-sdk/test/multipleBackend/utils.js

 		
 Operation of type HEAD

 		
 /lib/data/external/{BackendName}Client.js

 		
 /lib/data/external/{backendName}_lib/

 		
 tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

 		
 tests/functional/aws-node-sdk/test/multipleBackend/utils.js

 		
 Healthcheck

 		
 /lib/data/external/{BackendName}Client.js

 		
 /lib/data/external/{backendName}_lib/{backendName}_create_bucket.js

 		
 /lib/data/external/{backendName}_lib/utils.js

 		
 lib/data/multipleBackendGateway.js

 		
 Multipart upload (MPU)

 		
 /lib/data/external/{BackendName}Client.js

 		
 /lib/api/objectPutPart.js

 		
 /lib/data/external/{backendName}_lib/

 		
 lib/data/multipleBackendGateway.js

 		
 Add functional tests

 		
 Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

 		
 S3-Compatible Backends

 		
 Adding Support in CloudServer

 		
 Adding Support in Zenko Orbit

_static/file.png

_static/minus.png

_static/down.png

_static/scality-cloudserver-logo.png
& cloudserver

_static/up-pressed.png

_static/plus.png

_static/up.png

