
scality-zenko-cloudserver
Release 7.0.0

Aug 15, 2019

Documentation

1 Contributing 1
1.1 Need help? . 1
1.2 Got an idea? Get started! . 1
1.3 Don’t write code? There are other ways to help! . 1

2 Getting Started 3
2.1 Installation . 3
2.2 Run it with a file backend . 4
2.3 Run it with multiple data backends . 4
2.4 Run it with an in-memory backend . 4
2.5 Run it for continuous integration testing or in production with Docker 4
2.6 Testing . 5
2.7 Configuration . 5

3 Using Public Clouds as data backends 11
3.1 Introduction . 11
3.2 AWS S3 as a data backend . 11
3.3 Microsoft Azure as a data backend . 14
3.4 For any data backend . 17

4 Clients 19
4.1 GUI . 19
4.2 Command Line Tools . 19
4.3 JavaScript . 21
4.4 JAVA . 21
4.5 Ruby . 22
4.6 Python . 22
4.7 PHP . 23

5 Docker 25
5.1 Environment Variables . 25
5.2 Tunables and Setup Tips . 28
5.3 Continuous integration with Docker hosted CloudServer . 29
5.4 In production with Docker hosted CloudServer . 30

6 Integrations 31
6.1 High Availability . 31

i

6.2 S3FS . 36
6.3 Duplicity . 38

7 Architecture 41
7.1 Versioning . 41
7.2 Data-metadata daemon Architecture and Operational guide . 51
7.3 Listing . 54
7.4 Encryption . 54

8 Add New Backend Storage To Zenko Cloudserver 57
8.1 Adding support for data backends not supporting the S3 API . 57
8.2 S3 compatible backends . 66
8.3 Add support for a new backend . 67

9 Add A New Backend 69
9.1 Build a Custom Docker Image . 69

ii

CHAPTER 1

Contributing

1.1 Need help?

We’re always glad to help out. Simply open a GitHub issue and we’ll give you insight. If what you want is not
available, and if you’re willing to help us out, we’ll be happy to welcome you in the team, whether for a small fix or
for a larger feature development. Thanks for your interest!

1.2 Got an idea? Get started!

In order to contribute, please follow the Contributing Guidelines. If anything is unclear to you, reach out to us on slack
or via a GitHub issue.

1.3 Don’t write code? There are other ways to help!

We’re always eager to learn about our users’ stories. If you can’t contribute code, but would love to help us, please
shoot us an email at zenko@scality.com, and tell us what our software enables you to do! Thanks for your time!

1

https://github.com/scality/S3/issues
https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md
https://zenko-io.slack.com/
mailto:zenko@scality.com

scality-zenko-cloudserver, Release 7.0.0

2 Chapter 1. Contributing

CHAPTER 2

Getting Started

2.1 Installation

2.1.1 Dependencies

Building and running the Scality Zenko CloudServer requires node.js 6.9.5 and npm v3 . Up-to-date versions can be
found at Nodesource.

2.1.2 Clone source code

git clone https://github.com/scality/S3.git

2.1.3 Install js dependencies

Go to the ./S3 folder,

npm install

3

https://github.com/nodesource/distributions

scality-zenko-cloudserver, Release 7.0.0

2.2 Run it with a file backend

npm start

This starts an Zenko CloudServer on port 8000. Two additional ports 9990 and 9991 are also open locally for internal
transfer of metadata and data, respectively.

The default access key is accessKey1 with a secret key of verySecretKey1.

By default the metadata files will be saved in the localMetadata directory and the data files will be saved in the
localData directory within the ./S3 directory on your machine. These directories have been pre-created within the
repository. If you would like to save the data or metadata in different locations of your choice, you must specify them
with absolute paths. So, when starting the server:

mkdir -m 700 $(pwd)/myFavoriteDataPath
mkdir -m 700 $(pwd)/myFavoriteMetadataPath
export S3DATAPATH="$(pwd)/myFavoriteDataPath"
export S3METADATAPATH="$(pwd)/myFavoriteMetadataPath"
npm start

2.3 Run it with multiple data backends

export S3DATA='multiple'
npm start

This starts an Zenko CloudServer on port 8000. The default access key is accessKey1 with a secret key of verySe-
cretKey1.

With multiple backends, you have the ability to choose where each object will be saved by setting the following header
with a locationConstraint on a PUT request:

'x-amz-meta-scal-location-constraint':'myLocationConstraint'

If no header is sent with a PUT object request, the location constraint of the bucket will determine where the data is
saved. If the bucket has no location constraint, the endpoint of the PUT request will be used to determine location.

See the Configuration section below to learn how to set location constraints.

2.4 Run it with an in-memory backend

npm run mem_backend

This starts an Zenko CloudServer on port 8000. The default access key is accessKey1 with a secret key of verySe-
cretKey1.

2.5 Run it for continuous integration testing or in production with
Docker

DOCKER

4 Chapter 2. Getting Started

scality-zenko-cloudserver, Release 7.0.0

2.6 Testing

You can run the unit tests with the following command:

npm test

You can run the multiple backend unit tests with:

CI=true S3DATA=multiple npm start
npm run multiple_backend_test

You can run the linter with:

npm run lint

Running functional tests locally:

For the AWS backend and Azure backend tests to pass locally, you must modify tests/locationConfigTests.json so
that awsbackend specifies a bucketname of a bucket you have access to based on your credentials profile and modify
“azurebackend” with details for your Azure account.

The test suite requires additional tools, s3cmd and Redis installed in the environment the tests are running in.

• Install s3cmd

• Install redis and start Redis.

• Add localCache section to your config.json:

"localCache": {
"host": REDIS_HOST,
"port": REDIS_PORT

}

where REDIS_HOST is your Redis instance IP address ("127.0.0.1" if your Redis is running locally) and
REDIS_PORT is your Redis instance port (6379 by default)

• Add the following to the etc/hosts file on your machine:

127.0.0.1 bucketwebsitetester.s3-website-us-east-1.amazonaws.com

• Start the Zenko CloudServer in memory and run the functional tests:

CI=true npm run mem_backend
CI=true npm run ft_test

2.7 Configuration

There are three configuration files for your Scality Zenko CloudServer:

1. conf/authdata.json, described above for authentication

2. locationConfig.json, to set up configuration options for

where data will be saved

3. config.json, for general configuration options

2.6. Testing 5

http://s3tools.org/download
https://redis.io/download

scality-zenko-cloudserver, Release 7.0.0

2.7.1 Location Configuration

You must specify at least one locationConstraint in your locationConfig.json (or leave as pre-configured).

You must also specify ‘us-east-1’ as a locationConstraint so if you only define one locationConstraint, that would be
it. If you put a bucket to an unknown endpoint and do not specify a locationConstraint in the put bucket call, us-east-1
will be used.

For instance, the following locationConstraint will save data sent to myLocationConstraint to the file backend:

"myLocationConstraint": {
"type": "file",
"legacyAwsBehavior": false,
"details": {}

},

Each locationConstraint must include the type, legacyAwsBehavior, and details keys. type indi-
cates which backend will be used for that region. Currently, mem, file, and scality are the supported backends.
legacyAwsBehavior indicates whether the region will have the same behavior as the AWS S3 ‘us-east-1’ re-
gion. If the locationConstraint type is scality, details should contain connector information for sproxyd. If the
locationConstraint type is mem or file, details should be empty.

Once you have your locationConstraints in your locationConfig.json, you can specify a default locationConstraint for
each of your endpoints.

For instance, the following sets the localhost endpoint to the myLocationConstraint data backend defined
above:

"restEndpoints": {
"localhost": "myLocationConstraint"

},

If you would like to use an endpoint other than localhost for your Scality Zenko CloudServer, that endpoint MUST be
listed in your restEndpoints. Otherwise if your server is running with a:

• file backend: your default location constraint will be file

• memory backend: your default location constraint will be mem

2.7.2 Endpoints

Note that our Zenko CloudServer supports both:

• path-style: http://myhostname.com/mybucket

• hosted-style: http://mybucket.myhostname.com

However, hosted-style requests will not hit the server if you are using an ip address for your host. So, make sure you
are using path-style requests in that case. For instance, if you are using the AWS SDK for JavaScript, you would
instantiate your client like this:

const s3 = new aws.S3({
endpoint: 'http://127.0.0.1:8000',
s3ForcePathStyle: true,

});

6 Chapter 2. Getting Started

http://myhostname.com/mybucket
http://mybucket.myhostname.com

scality-zenko-cloudserver, Release 7.0.0

2.7.3 Setting your own access key and secret key pairs

You can set credentials for many accounts by editing conf/authdata.json but if you want to specify one set of
your own credentials, you can use SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY environ-
ment variables.

SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY

These variables specify authentication credentials for an account named “CustomAccount”.

Note: Anything in the authdata.json file will be ignored.

SCALITY_ACCESS_KEY_ID=newAccessKey SCALITY_SECRET_ACCESS_KEY=newSecretKey npm start

2.7.4 Scality with SSL

If you wish to use https with your local Zenko CloudServer, you need to set up SSL certificates. Here is a simple guide
of how to do it.

Deploying Zenko CloudServer

First, you need to deploy Zenko CloudServer. This can be done very easily via our **DockerHub** page (you want
to run it with a file backend).

Note: - If you don’t have docker installed on your machine, here are the ‘instructions to install it for your
distribution <https://docs.docker.com/engine/installation/>‘__

Updating your Zenko CloudServer container’s config

You’re going to add your certificates to your container. In order to do so, you need to exec inside your Zenko Cloud-
Server container. Run a $> docker ps and find your container’s id (the corresponding image name should be
scality/s3server. Copy the corresponding container id (here we’ll use 894aee038c5e, and run:

$> docker exec -it 894aee038c5e bash

You’re now inside your container, using an interactive terminal :)

Generate SSL key and certificates

There are 5 steps to this generation. The paths where the different files are stored are defined after the -out option in
each command

Generate a private key for your CSR
$> openssl genrsa -out ca.key 2048
Generate a self signed certificate for your local Certificate Authority
$> openssl req -new -x509 -extensions v3_ca -key ca.key -out ca.crt -days 99999 -
→˓subj "/C=US/ST=Country/L=City/O=Organization/CN=scality.test"

Generate a key for Zenko CloudServer
$> openssl genrsa -out test.key 2048
Generate a Certificate Signing Request for S3 Server

(continues on next page)

2.7. Configuration 7

https://hub.docker.com/r/scality/s3server/

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

$> openssl req -new -key test.key -out test.csr -subj "/C=US/ST=Country/L=City/
→˓O=Organization/CN=*.scality.test"
Generate a local-CA-signed certificate for S3 Server
$> openssl x509 -req -in test.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out test.
→˓crt -days 99999 -sha256

Update Zenko CloudServer config.json

Add a certFilePaths section to ./config.json with the appropriate paths:

"certFilePaths": {
"key": "./test.key",
"cert": "./test.crt",
"ca": "./ca.crt"

}

Run your container with the new config

First, you need to exit your container. Simply run $> exit. Then, you need to restart your container. Normally, a
simple $> docker restart s3server should do the trick.

Update your host config

Associates local IP addresses with hostname

In your /etc/hosts file on Linux, OS X, or Unix (with root permissions), edit the line of localhost so it looks like
this:

127.0.0.1 localhost s3.scality.test

Copy the local certificate authority from your container

In the above commands, it’s the file named ca.crt. Choose the path you want to save this file at (here we chose
/root/ca.crt), and run something like:

$> docker cp 894aee038c5e:/usr/src/app/ca.crt /root/ca.crt

Test your config

If you do not have aws-sdk installed, run $> npm install aws-sdk. In a test.js file, paste the following
script:

const AWS = require('aws-sdk');
const fs = require('fs');
const https = require('https');

const httpOptions = {

(continues on next page)

8 Chapter 2. Getting Started

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

agent: new https.Agent({
// path on your host of the self-signed certificate
ca: fs.readFileSync('./ca.crt', 'ascii'),

}),
};

const s3 = new AWS.S3({
httpOptions,
accessKeyId: 'accessKey1',
secretAccessKey: 'verySecretKey1',
// The endpoint must be s3.scality.test, else SSL will not work
endpoint: 'https://s3.scality.test:8000',
sslEnabled: true,
// With this setup, you must use path-style bucket access
s3ForcePathStyle: true,

});

const bucket = 'cocoriko';

s3.createBucket({ Bucket: bucket }, err => {
if (err) {

return console.log('err createBucket', err);
}
return s3.deleteBucket({ Bucket: bucket }, err => {

if (err) {
return console.log('err deleteBucket', err);

}
return console.log('SSL is cool!');

});
});

Now run that script with $> nodejs test.js. If all goes well, it should output SSL is cool!. Enjoy that
added security!

2.7. Configuration 9

scality-zenko-cloudserver, Release 7.0.0

10 Chapter 2. Getting Started

CHAPTER 3

Using Public Clouds as data backends

3.1 Introduction

As stated in our GETTING STARTED guide, new data backends can be added by creating a region (also called location
constraint) with the right endpoint and credentials. This section of the documentation shows you how to set up our
currently supported public cloud backends:

• Amazon S3 ;

• Microsoft Azure .

For each public cloud backend, you will have to edit your CloudServer locationConfig.json and do a few
setup steps on the applicable public cloud backend.

3.2 AWS S3 as a data backend

3.2.1 From the AWS S3 Console (or any AWS S3 CLI tool)

Create a bucket where you will host your data for this new location constraint. This bucket must have versioning
enabled:

• This is an option you may choose to activate at step 2 of Bucket Creation in the Console;

• With AWS CLI, use put-bucket-versioning from the s3api commands on your bucket of choice;

• Using other tools, please refer to your tool’s documentation.

In this example, our bucket will be named zenkobucket and has versioning enabled.

3.2.2 From the CloudServer repository

11

scality-zenko-cloudserver, Release 7.0.0

locationConfig.json

Edit this file to add a new location constraint. This location constraint will contain the information for the AWS S3
bucket to which you will be writing your data whenever you create a CloudServer bucket in this location. There are a
few configurable options here:

• type : set to aws_s3 to indicate this location constraint is writing data to AWS S3;

• legacyAwsBehavior : set to true to indicate this region should behave like AWS S3 us-east-1 region,
set to false to indicate this region should behave like any other AWS S3 region;

• bucketName : set to an existing bucket in your AWS S3 Account; this is the bucket in which your data will be
stored for this location constraint;

• awsEndpoint : set to your bucket’s endpoint, usually s3.amazonaws.com;

• bucketMatch : set to true if you want your object name to be the same in your local bucket and your
AWS S3 bucket; set to false if you want your object name to be of the form {{localBucketName}}/
{{objectname}} in your AWS S3 hosted bucket;

• credentialsProfile and credentials are two ways to provide your AWS S3 credentials for that
bucket, use only one of them :

– credentialsProfile : set to the profile name allowing you to access your AWS S3 bucket from your
~/.aws/credentials file;

– credentials : set the two fields inside the object (accessKey and secretKey) to their respective
values from your AWS credentials.

(...)
"aws-test": {

"type": "aws_s3",
"legacyAwsBehavior": true,
"details": {

"awsEndpoint": "s3.amazonaws.com",
"bucketName": "zenkobucket",
"bucketMatch": true,
"credentialsProfile": "zenko"

}
},
(...)

(...)
"aws-test": {

"type": "aws_s3",
"legacyAwsBehavior": true,
"details": {

"awsEndpoint": "s3.amazonaws.com",
"bucketName": "zenkobucket",
"bucketMatch": true,
"credentials": {

"accessKey": "WHDBFKILOSDDVF78NPMQ",
"secretKey": "87hdfGCvDS+YYzefKLnjjZEYstOIuIjs/2X72eET"

}
}

},
(...)

12 Chapter 3. Using Public Clouds as data backends

scality-zenko-cloudserver, Release 7.0.0

Warning: If you set bucketMatch to true, we strongly advise that you only have one local bucket per
AWS S3 location. Without bucketMatch set to false, your object names in your AWS S3 bucket will not
be prefixed with your Cloud Server bucket name. This means that if you put an object foo to your CloudServer
bucket zenko1 and you then put a different foo to your CloudServer bucket zenko2 and both zenko1 and
zenko2 point to the same AWS bucket, the second foo will overwrite the first foo.

~/.aws/credentials

Tip: If you explicitly set your accessKey and secretKey in the credentials object of your aws_s3 location
in your locationConfig.json file, you may skip this section

Make sure your ~/.aws/credentials file has a profile matching the one defined in your locationConfig.
json. Following our previous example, it would look like:

[zenko]
aws_access_key_id=WHDBFKILOSDDVF78NPMQ
aws_secret_access_key=87hdfGCvDS+YYzefKLnjjZEYstOIuIjs/2X72eET

3.2.3 Start the server with the ability to write to AWS S3

Inside the repository, once all the files have been edited, you should be able to start the server and start writing data to
AWS S3 through CloudServer.

Start the server locally
$> S3DATA=multiple npm start

3.2.4 Run the server as a docker container with the ability to write to AWS S3

Tip: If you set the credentials object in your locationConfig.json file, you don’t need to mount your
.aws/credentials file

Mount all the files that have been edited to override defaults, and do a standard Docker run; then you can start writing
data to AWS S3 through CloudServer.

Start the server in a Docker container
$> sudo docker run -d --name CloudServer \
-v $(pwd)/data:/usr/src/app/localData \
-v $(pwd)/metadata:/usr/src/app/localMetadata \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v $(pwd)/conf/authdata.json:/usr/src/app/conf/authdata.json \
-v ~/.aws/credentials:/root/.aws/credentials \
-e S3DATA=multiple -e ENDPOINT=http://localhost -p 8000:8000
-d scality/s3server

3.2. AWS S3 as a data backend 13

scality-zenko-cloudserver, Release 7.0.0

3.2.5 Testing: put an object to AWS S3 using CloudServer

In order to start testing pushing to AWS S3, you will need to create a local bucket in the AWS S3 location constraint
- this local bucket will only store the metadata locally, while both the data and any user metadata (x-amz-meta
headers sent with a PUT object, and tags) will be stored on AWS S3. This example is based on all our previous steps.

Create a local bucket storing data in AWS S3
$> s3cmd --host=127.0.0.1:8000 mb s3://zenkobucket --region=aws-test
Put an object to AWS S3, and store the metadata locally
$> s3cmd --host=127.0.0.1:8000 put /etc/hosts s3://zenkobucket/testput
upload: '/etc/hosts' -> 's3://zenkobucket/testput' [1 of 1]
330 of 330 100% in 0s 380.87 B/s done

List locally to check you have the metadata
$> s3cmd --host=127.0.0.1:8000 ls s3://zenkobucket
2017-10-23 10:26 330 s3://zenkobucket/testput

Then, from the AWS Console, if you go into your bucket, you should see your newly uploaded object:

3.2.6 Troubleshooting

Make sure your ~/.s3cfg file has credentials matching your local CloudServer credentials defined in conf/
authdata.json. By default, the access key is accessKey1 and the secret key is verySecretKey1. For
more informations, refer to our template ~/.s3cfg .

Pre-existing objects in your AWS S3 hosted bucket can unfortunately not be accessed by CloudServer at this time.

Make sure versioning is enabled in your remote AWS S3 hosted bucket. To check, using the AWS Console, click on
your bucket name, then on “Properties” at the top, and then you should see something like this:

3.3 Microsoft Azure as a data backend

3.3.1 From the MS Azure Console

From your Storage Account dashboard, create a container where you will host your data for this new location con-
straint.

You will also need to get one of your Storage Account Access Keys, and to provide it to CloudServer. This can be
found from your Storage Account dashboard, under “Settings, then “Access keys”.

In this example, our container will be named zenkontainer, and will belong to the zenkomeetups Storage
Account.

14 Chapter 3. Using Public Clouds as data backends

scality-zenko-cloudserver, Release 7.0.0

3.3.2 From the CloudServer repository

locationConfig.json

Edit this file to add a new location constraint. This location constraint will contain the information for the MS Azure
container to which you will be writing your data whenever you create a CloudServer bucket in this location. There are
a few configurable options here:

• type : set to azure to indicate this location constraint is writing data to MS Azure;

• legacyAwsBehavior : set to true to indicate this region should behave like AWS S3 us-east-1 region,
set to false to indicate this region should behave like any other AWS S3 region (in the case of MS Azure
hosted data, this is mostly relevant for the format of errors);

• azureStorageEndpoint : set to your storage account’s endpoint, usually https://
{{storageAccountName}}.blob.core.windows.net;

• azureContainerName : set to an existing container in your MS Azure storage account; this is the container
in which your data will be stored for this location constraint;

• bucketMatch : set to true if you want your object name to be the same in your local bucket and your MS
Azure container; set to false if you want your object name to be of the form {{localBucketName}}/
{{objectname}} in your MS Azure container ;

• azureStorageAccountName : the MS Azure Storage Account to which your container belongs;

• azureStorageAccessKey : one of the Access Keys associated to the above defined MS Azure Storage
Account.

(...)
"azure-test": {

"type": "azure",
"legacyAwsBehavior": false,
"details": {

(continues on next page)

3.3. Microsoft Azure as a data backend 15

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

"azureStorageEndpoint": "https://zenkomeetups.blob.core.windows.net/",
"bucketMatch": true,
"azureContainerName": "zenkontainer",
"azureStorageAccountName": "zenkomeetups",
"azureStorageAccessKey":

→˓"auhyDo8izbuU4aZGdhxnWh0ODKFP3IWjsN1UfFaoqFbnYzPj9bxeCVAzTIcgzdgqomDKx6QS+8ov8PYCON0Nxw==
→˓"

}
},
(...)

Warning: If you set bucketMatch to true, we strongly advise that you only have one local bucket per MS
Azure location. Without bucketMatch set to false, your object names in your MS Azure container will not
be prefixed with your Cloud Server bucket name. This means that if you put an object foo to your CloudServer
bucket zenko1 and you then put a different foo to your CloudServer bucket zenko2 and both zenko1 and
zenko2 point to the same MS Azure container, the second foo will overwrite the first foo.

Tip: You may export environment variables to override some of your locationConfig.json variable ; the
syntax for them is {{region-name}}_{{ENV_VAR_NAME}}; currently, the available variables are those shown
below, with the values used in the current example:

$> export azure-test_AZURE_STORAGE_ACCOUNT_NAME="zenkomeetups"
$> export azure-test_AZURE_STORAGE_ACCESS_KEY=
→˓"auhyDo8izbuU4aZGdhxnWh0ODKFP3IWjsN1UfFaoqFbnYzPj9bxeCVAzTIcgzdgqomDKx6QS+8ov8PYCON0Nxw==
→˓"
$> export azure-test_AZURE_STORAGE_ENDPOINT="https://zenkomeetups.blob.core.windows.
→˓net/"

3.3.3 Start the server with the ability to write to MS Azure

Inside the repository, once all the files have been edited, you should be able to start the server and start writing data to
MS Azure through CloudServer.

Start the server locally
$> S3DATA=multiple npm start

3.3.4 Run the server as a docker container with the ability to write to MS Azure

Mount all the files that have been edited to override defaults, and do a standard Docker run; then you can start writing
data to MS Azure through CloudServer.

Start the server in a Docker container
$> sudo docker run -d --name CloudServer \
-v $(pwd)/data:/usr/src/app/localData \
-v $(pwd)/metadata:/usr/src/app/localMetadata \
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json \
-v $(pwd)/conf/authdata.json:/usr/src/app/conf/authdata.json \
-e S3DATA=multiple -e ENDPOINT=http://localhost -p 8000:8000
-d scality/s3server

16 Chapter 3. Using Public Clouds as data backends

scality-zenko-cloudserver, Release 7.0.0

3.3.5 Testing: put an object to MS Azure using CloudServer

In order to start testing pushing to MS Azure, you will need to create a local bucket in the MS Azure region - this local
bucket will only store the metadata locally, while both the data and any user metadata (x-amz-meta headers sent
with a PUT object, and tags) will be stored on MS Azure. This example is based on all our previous steps.

Create a local bucket storing data in MS Azure
$> s3cmd --host=127.0.0.1:8000 mb s3://zenkontainer --region=azure-test
Put an object to MS Azure, and store the metadata locally
$> s3cmd --host=127.0.0.1:8000 put /etc/hosts s3://zenkontainer/testput
upload: '/etc/hosts' -> 's3://zenkontainer/testput' [1 of 1]
330 of 330 100% in 0s 380.87 B/s done

List locally to check you have the metadata
$> s3cmd --host=127.0.0.1:8000 ls s3://zenkobucket
2017-10-24 14:38 330 s3://zenkontainer/testput

Then, from the MS Azure Console, if you go into your container, you should see your newly uploaded object:

3.3.6 Troubleshooting

Make sure your ~/.s3cfg file has credentials matching your local CloudServer credentials defined in conf/
authdata.json. By default, the access key is accessKey1 and the secret key is verySecretKey1. For
more informations, refer to our template ~/.s3cfg .

Pre-existing objects in your MS Azure container can unfortunately not be accessed by CloudServer at this time.

3.4 For any data backend

3.4.1 From the CloudServer repository

config.json

Important: You only need to follow this section if you want to define a given location as the default for a specific
endpoint

Edit the restEndpoint section of your config.json file to add an endpoint definition matching the location you
want to use as a default for an endpoint to this specific endpoint. In this example, we’ll make custom-location
our default location for the endpoint zenkotos3.com:

(...)
"restEndpoints": {

"localhost": "us-east-1",
"127.0.0.1": "us-east-1",

(continues on next page)

3.4. For any data backend 17

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

"cloudserver-front": "us-east-1",
"s3.docker.test": "us-east-1",
"127.0.0.2": "us-east-1",
"zenkotos3.com": "custom-location"

},
(...)

18 Chapter 3. Using Public Clouds as data backends

CHAPTER 4

Clients

List of applications that have been tested with Zenko CloudServer.

4.1 GUI

4.1.1 Cyberduck

• https://www.youtube.com/watch?v=-n2MCt4ukUg

• https://www.youtube.com/watch?v=IyXHcu4uqgU

4.1.2 Cloud Explorer

• https://www.youtube.com/watch?v=2hhtBtmBSxE

4.1.3 CloudBerry Lab

• https://youtu.be/IjIx8g_o0gY

4.2 Command Line Tools

4.2.1 s3curl

https://github.com/scality/S3/blob/master/tests/functional/s3curl/s3curl.pl

19

https://www.youtube.com/watch?v=-n2MCt4ukUg
https://www.youtube.com/watch?v=IyXHcu4uqgU
https://www.youtube.com/watch?v=2hhtBtmBSxE
https://youtu.be/IjIx8g_o0gY
https://github.com/scality/S3/blob/master/tests/functional/s3curl/s3curl.pl

scality-zenko-cloudserver, Release 7.0.0

4.2.2 aws-cli

~/.aws/credentials on Linux, OS X, or Unix or C:\Users\USERNAME\.aws\credentials on Win-
dows

[default]
aws_access_key_id = accessKey1
aws_secret_access_key = verySecretKey1

~/.aws/config on Linux, OS X, or Unix or C:\Users\USERNAME\.aws\config on Windows

[default]
region = us-east-1

Note: us-east-1 is the default region, but you can specify any region.

See all buckets:

aws s3 ls --endpoint-url=http://localhost:8000

Create bucket:

aws --endpoint-url=http://localhost:8000 s3 mb s3://mybucket

4.2.3 s3cmd

If using s3cmd as a client to S3 be aware that v4 signature format is buggy in s3cmd versions < 1.6.1.

~/.s3cfg on Linux, OS X, or Unix or C:\Users\USERNAME\.s3cfg on Windows

[default]
access_key = accessKey1
secret_key = verySecretKey1
host_base = localhost:8000
host_bucket = %(bucket).localhost:8000
signature_v2 = False
use_https = False

See all buckets:

s3cmd ls

4.2.4 rclone

~/.rclone.conf on Linux, OS X, or Unix or C:\Users\USERNAME\.rclone.conf on Windows

[remote]
type = s3
env_auth = false
access_key_id = accessKey1
secret_access_key = verySecretKey1
region = other-v2-signature
endpoint = http://localhost:8000
location_constraint =
acl = private

(continues on next page)

20 Chapter 4. Clients

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

server_side_encryption =
storage_class =

See all buckets:

rclone lsd remote:

4.3 JavaScript

4.3.1 AWS JavaScript SDK

const AWS = require('aws-sdk');

const s3 = new AWS.S3({
accessKeyId: 'accessKey1',
secretAccessKey: 'verySecretKey1',
endpoint: 'localhost:8000',
sslEnabled: false,
s3ForcePathStyle: true,

});

4.4 JAVA

4.4.1 AWS JAVA SDK

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.S3ClientOptions;
import com.amazonaws.services.s3.model.Bucket;

public class S3 {

public static void main(String[] args) {

AWSCredentials credentials = new BasicAWSCredentials("accessKey1",
"verySecretKey1");

// Create a client connection based on credentials
AmazonS3 s3client = new AmazonS3Client(credentials);
s3client.setEndpoint("http://localhost:8000");
// Using path-style requests
// (deprecated) s3client.setS3ClientOptions(new S3ClientOptions().

→˓withPathStyleAccess(true));
s3client.setS3ClientOptions(S3ClientOptions.builder().

→˓setPathStyleAccess(true).build());

// Create bucket
String bucketName = "javabucket";

(continues on next page)

4.3. JavaScript 21

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

s3client.createBucket(bucketName);

// List off all buckets
for (Bucket bucket : s3client.listBuckets()) {

System.out.println(" - " + bucket.getName());
}

}
}

4.5 Ruby

4.5.1 AWS SDK for Ruby - Version 2

require 'aws-sdk'

s3 = Aws::S3::Client.new(
:access_key_id => 'accessKey1',
:secret_access_key => 'verySecretKey1',
:endpoint => 'http://localhost:8000',
:force_path_style => true

)

resp = s3.list_buckets

4.5.2 fog

require "fog"

connection = Fog::Storage.new(
{

:provider => "AWS",
:aws_access_key_id => 'accessKey1',
:aws_secret_access_key => 'verySecretKey1',
:endpoint => 'http://localhost:8000',
:path_style => true,
:scheme => 'http',

})

4.6 Python

4.6.1 boto2

import boto
from boto.s3.connection import S3Connection, OrdinaryCallingFormat

connection = S3Connection(
aws_access_key_id='accessKey1',

(continues on next page)

22 Chapter 4. Clients

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

aws_secret_access_key='verySecretKey1',
is_secure=False,
port=8000,
calling_format=OrdinaryCallingFormat(),
host='localhost'

)

connection.create_bucket('mybucket')

4.6.2 boto3

Client integration

import boto3

client = boto3.client(
's3',
aws_access_key_id='accessKey1',
aws_secret_access_key='verySecretKey1',
endpoint_url='http://localhost:8000'

)

lists = client.list_buckets()

Full integration (with object mapping)

import os

from botocore.utils import fix_s3_host
import boto3

os.environ['AWS_ACCESS_KEY_ID'] = "accessKey1"
os.environ['AWS_SECRET_ACCESS_KEY'] = "verySecretKey1"

s3 = boto3.resource(service_name='s3', endpoint_url='http://localhost:8000')
s3.meta.client.meta.events.unregister('before-sign.s3', fix_s3_host)

for bucket in s3.buckets.all():
print(bucket.name)

4.7 PHP

Should force path-style requests even though v3 advertises it does by default.

4.7.1 AWS PHP SDK v3

use Aws\S3\S3Client;

$client = S3Client::factory([
'region' => 'us-east-1',
'version' => 'latest',

(continues on next page)

4.7. PHP 23

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

'endpoint' => 'http://localhost:8000',
'use_path_style_endpoint' => true,
'credentials' => [

'key' => 'accessKey1',
'secret' => 'verySecretKey1'

]
]);

$client->createBucket(array(
'Bucket' => 'bucketphp',

));

24 Chapter 4. Clients

CHAPTER 5

Docker

• Environment Variables

• Tunables and setup tips

• Examples for continuous integration with Docker

• Examples for going in production with Docker

5.1 Environment Variables

5.1.1 S3DATA

S3DATA=multiple

Allows you to run Scality Zenko CloudServer with multiple data backends, defined as regions. When using multiple
data backends, a custom locationConfig.json file is mandatory. It will allow you to set custom regions. You
will then need to provide associated rest_endpoints for each custom region in your config.json file. Learn more
about multiple backends configuration

If you are using Scality RING endpoints, please refer to your customer documentation.

Running it with an AWS S3 hosted backend

To run CloudServer with an S3 AWS backend, you will have to add a new section to your locationConfig.json
file with the aws_s3 location type:

(...)
"awsbackend": {

"type": "aws_s3",
"details": {

"awsEndpoint": "s3.amazonaws.com",

(continues on next page)

25

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

"bucketName": "yourawss3bucket",
"bucketMatch": true,
"credentialsProfile": "aws_hosted_profile"

}
}
(...)

You will also have to edit your AWS credentials file to be able to use your command line tool of choice. This file should
mention credentials for all the backends you’re using. You can use several profiles when using multiple profiles.

[default]
aws_access_key_id=accessKey1
aws_secret_access_key=verySecretKey1
[aws_hosted_profile]
aws_access_key_id={{YOUR_ACCESS_KEY}}
aws_secret_access_key={{YOUR_SECRET_KEY}}

Just as you need to mount your locationConfig.json, you will need to mount your AWS credentials file at
run time: -v ~/.aws/credentials:/root/.aws/credentials on Linux, OS X, or Unix or -v
C:\Users\USERNAME\.aws\credential:/root/.aws/credentials on Windows

NOTE: One account can’t copy to another account with a source and destination on real AWS unless the account
associated with the access Key/secret Key pairs used for the destination bucket has rights to get in the source bucket.
ACL’s would have to be updated on AWS directly to enable this.

5.1.2 S3BACKEND

S3BACKEND=file

When storing file data, for it to be persistent you must mount docker volumes for both data and metadata. See this
section

S3BACKEND=mem

This is ideal for testing - no data will remain after container is shutdown.

5.1.3 ENDPOINT

This variable specifies your endpoint. If you have a domain such as new.host.com, by specifying that here, you and
your users can direct s3 server requests to new.host.com.

$ docker run -d --name s3server -p 8000:8000 -e ENDPOINT=new.host.com scality/s3server

Note: In your /etc/hosts file on Linux, OS X, or Unix with root permissions, make sure to associate 127.0.0.1
with new.host.com

5.1.4 SCALITY_ACCESS_KEY_ID and SCALITY_SECRET_ACCESS_KEY

These variables specify authentication credentials for an account named “CustomAccount”.

You can set credentials for many accounts by editing conf/authdata.json (see below for further info), but if
you just want to specify one set of your own, you can use these environment variables.

26 Chapter 5. Docker

scality-zenko-cloudserver, Release 7.0.0

docker run -d --name s3server -p 8000:8000 -e SCALITY_ACCESS_KEY_ID=newAccessKey
-e SCALITY_SECRET_ACCESS_KEY=newSecretKey scality/s3server

Note: Anything in the authdata.json file will be ignored. Note: The old ACCESS_KEY and SECRET_KEY
environment variables are now deprecated

5.1.5 LOG_LEVEL

This variable allows you to change the log level: info, debug or trace. The default is info. Debug will give you more
detailed logs and trace will give you the most detailed.

$ docker run -d --name s3server -p 8000:8000 -e LOG_LEVEL=trace scality/s3server

5.1.6 SSL

This variable set to true allows you to run S3 with SSL:

Note1: You also need to specify the ENDPOINT environment variable. Note2: In your /etc/hosts file on Linux,
OS X, or Unix with root permissions, make sure to associate 127.0.0.1 with <YOUR_ENDPOINT>

Warning: These certs, being self-signed (and the CA being generated inside the container) will be untrusted by any
clients, and could disappear on a container upgrade. That’s ok as long as it’s for quick testing. Also, best security
practice for non-testing would be to use an extra container to do SSL/TLS termination such as haproxy/nginx/stunnel
to limit what an exploit on either component could expose, as well as certificates in a mounted volume

$ docker run -d --name s3server -p 8000:8000 -e SSL=TRUE -e ENDPOINT=<YOUR_ENDPOINT>
scality/s3server

More information about how to use S3 server with SSL here

5.1.7 LISTEN_ADDR

This variable instructs the Zenko CloudServer, and its data and metadata components to listen on the specified address.
This allows starting the data or metadata servers as standalone services, for example.

$ docker run -d --name s3server-data -p 9991:9991 -e LISTEN_ADDR=0.0.0.0
scality/s3server npm run start_dataserver

5.1.8 DATA_HOST and METADATA_HOST

These variables configure the data and metadata servers to use, usually when they are running on another host and
only starting the stateless Zenko CloudServer.

$ docker run -d --name s3server -e DATA_HOST=s3server-data
-e METADATA_HOST=s3server-metadata scality/s3server npm run start_s3server

5.1.9 REDIS_HOST

Use this variable to connect to the redis cache server on another host than localhost.

5.1. Environment Variables 27

https://s3.scality.com/v1.0/page/scality-with-ssl

scality-zenko-cloudserver, Release 7.0.0

$ docker run -d --name s3server -p 8000:8000
-e REDIS_HOST=my-redis-server.example.com scality/s3server

5.1.10 REDIS_PORT

Use this variable to connect to the redis cache server on another port than the default 6379.

$ docker run -d --name s3server -p 8000:8000
-e REDIS_PORT=6379 scality/s3server

5.2 Tunables and Setup Tips

5.2.1 Using Docker Volumes

Zenko CloudServer runs with a file backend by default.

So, by default, the data is stored inside your Zenko CloudServer Docker container.

However, if you want your data and metadata to persist, you MUST use Docker volumes to host your data and metadata
outside your Zenko CloudServer Docker container. Otherwise, the data and metadata will be destroyed when you erase
the container.

$ docker run -v $(pwd)/data:/usr/src/app/localData -v $(pwd)/metadata:/usr/src/app/
→˓localMetadata
-p 8000:8000 -d scality/s3server

This command mounts the host directory, ./data, into the container at /usr/src/app/localData and the host
directory, ./metadata, into the container at /usr/src/app/localMetaData. It can also be any host mount
point, like /mnt/data and /mnt/metadata.

5.2.2 Adding modifying or deleting accounts or users credentials

1. Create locally a customized authdata.json based on our /conf/authdata.json.

2. Use Docker Volume to override the default authdata.json through a docker file mapping.

For example:

$ docker run -v $(pwd)/authdata.json:/usr/src/app/conf/authdata.json -p 8000:8000 -d
scality/s3server

5.2.3 Specifying your own host name

To specify a host name (e.g. s3.domain.name), you can provide your own config.json using Docker Volume.

First add a new key-value pair in the restEndpoints section of your config.json. The key in the key-value pair should
be the host name you would like to add and the value is the default location_constraint for this endpoint.

For example, s3.example.com is mapped to us-east-1 which is one of the location_constraints listed
in your locationConfig.json file here.

More information about location configuration here

28 Chapter 5. Docker

https://docs.docker.com/engine/tutorials/dockervolumes/
https://github.com/scality/S3/blob/master/config.json
https://docs.docker.com/engine/tutorials/dockervolumes/
https://github.com/scality/S3/blob/master/locationConfig.json
https://github.com/scality/S3/blob/master/README.md#location-configuration

scality-zenko-cloudserver, Release 7.0.0

"restEndpoints": {
"localhost": "file",
"127.0.0.1": "file",
...
"s3.example.com": "us-east-1"

},

Then, run your Scality S3 Server using Docker Volume:

$ docker run -v $(pwd)/config.json:/usr/src/app/config.json -p 8000:8000 -d scality/
→˓s3server

Your local config.json file will override the default one through a docker file mapping.

5.2.4 Running as an unprivileged user

Zenko CloudServer runs as root by default.

You can change that by modifing the dockerfile and specifying a user before the entrypoint.

The user needs to exist within the container, and own the folder /usr/src/app for Scality Zenko CloudServer to run
properly.

For instance, you can modify these lines in the dockerfile:

...
&& groupadd -r -g 1001 scality \
&& useradd -u 1001 -g 1001 -d /usr/src/app -r scality \
&& chown -R scality:scality /usr/src/app

...

USER scality
ENTRYPOINT ["/usr/src/app/docker-entrypoint.sh"]

5.3 Continuous integration with Docker hosted CloudServer

When you start the Docker Scality Zenko CloudServer image, you can adjust the configuration of the Scality Zenko
CloudServer instance by passing one or more environment variables on the docker run command line.

Sample ways to run it for CI are:

• With custom locations (one in-memory, one hosted on AWS), and custom credentials mounted:

docker run --name CloudServer -p 8000:8000
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json
-v $(pwd)/authdata.json:/usr/src/app/conf/authdata.json
-v ~/.aws/credentials:/root/.aws/credentials
-e S3DATA=multiple -e S3BACKEND=mem scality/s3server

• With custom locations, (one in-memory, one hosted on AWS, one file), and custom credentials set as environ-
ment variables (see this section):

5.3. Continuous integration with Docker hosted CloudServer 29

https://docs.docker.com/engine/tutorials/dockervolumes/

scality-zenko-cloudserver, Release 7.0.0

docker run --name CloudServer -p 8000:8000
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json
-v ~/.aws/credentials:/root/.aws/credentials
-v $(pwd)/data:/usr/src/app/localData -v $(pwd)/metadata:/usr/src/app/localMetadata
-e SCALITY_ACCESS_KEY_ID=accessKey1
-e SCALITY_SECRET_ACCESS_KEY=verySecretKey1
-e S3DATA=multiple -e S3BACKEND=mem scality/s3server

5.4 In production with Docker hosted CloudServer

In production, we expect that data will be persistent, that you will use the multiple backends capabilities of Zenko
CloudServer, and that you will have a custom endpoint for your local storage, and custom credentials for your local
storage:

docker run -d --name CloudServer
-v $(pwd)/data:/usr/src/app/localData -v $(pwd)/metadata:/usr/src/app/localMetadata
-v $(pwd)/locationConfig.json:/usr/src/app/locationConfig.json
-v $(pwd)/authdata.json:/usr/src/app/conf/authdata.json
-v ~/.aws/credentials:/root/.aws/credentials -e S3DATA=multiple
-e ENDPOINT=custom.endpoint.com
-p 8000:8000 -d scality/s3server

30 Chapter 5. Docker

CHAPTER 6

Integrations

6.1 High Availability

Docker swarm is a clustering tool developped by Docker and ready to use with its containers. It allows to start a
service, which we define and use as a means to ensure Zenko CloudServer’s continuous availability to the end user.
Indeed, a swarm defines a manager and n workers among n+1 servers. We will do a basic setup in this tutorial, with
just 3 servers, which already provides a strong service resiliency, whilst remaining easy to do as an individual. We will
use NFS through docker to share data and metadata between the different servers.

You will see that the steps of this tutorial are defined as On Server, On Clients, On All Machines. This refers
respectively to NFS Server, NFS Clients, or NFS Server and Clients. In our example, the IP of the Server will be
10.200.15.113, while the IPs of the Clients will be 10.200.15.96 and 10.200.15.97

6.1.1 Installing docker

Any version from docker 1.12.6 onwards should work; we used Docker 17.03.0-ce for this tutorial.

On All Machines

On Ubuntu 14.04

The docker website has solid documentation. We have chosen to install the aufs dependency, as recommended by
Docker. Here are the required commands:

$> sudo apt-get update
$> sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual
$> sudo apt-get install apt-transport-https ca-certificates curl software-properties-
→˓common
$> curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$> sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
→˓$(lsb_release -cs) stable"

(continues on next page)

31

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/installation/linux/ubuntu/

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

$> sudo apt-get update
$> sudo apt-get install docker-ce

On CentOS 7

The docker website has solid documentation. Here are the required commands:

$> sudo yum install -y yum-utils
$> sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-
→˓ce.repo
$> sudo yum makecache fast
$> sudo yum install docker-ce
$> sudo systemctl start docker

6.1.2 Configure NFS

On Clients

Your NFS Clients will mount Docker volumes over your NFS Server’s shared folders. Hence, you don’t have to mount
anything manually, you just have to install the NFS commons:

On Ubuntu 14.04

Simply install the NFS commons:

$> sudo apt-get install nfs-common

On CentOS 7

Install the NFS utils, and then start the required services:

$> yum install nfs-utils
$> sudo systemctl enable rpcbind
$> sudo systemctl enable nfs-server
$> sudo systemctl enable nfs-lock
$> sudo systemctl enable nfs-idmap
$> sudo systemctl start rpcbind
$> sudo systemctl start nfs-server
$> sudo systemctl start nfs-lock
$> sudo systemctl start nfs-idmap

On Server

Your NFS Server will be the machine to physically host the data and metadata. The package(s) we will install on it is
slightly different from the one we installed on the clients.

32 Chapter 6. Integrations

https://docs.docker.com/engine/installation/linux/centos/

scality-zenko-cloudserver, Release 7.0.0

On Ubuntu 14.04

Install the NFS server specific package and the NFS commons:

$> sudo apt-get install nfs-kernel-server nfs-common

On CentOS 7

Same steps as with the client: install the NFS utils and start the required services:

$> yum install nfs-utils
$> sudo systemctl enable rpcbind
$> sudo systemctl enable nfs-server
$> sudo systemctl enable nfs-lock
$> sudo systemctl enable nfs-idmap
$> sudo systemctl start rpcbind
$> sudo systemctl start nfs-server
$> sudo systemctl start nfs-lock
$> sudo systemctl start nfs-idmap

On Ubuntu 14.04 and CentOS 7

Choose where your shared data and metadata from your local Zenko CloudServer will be stored. We chose to go with
/var/nfs/data and /var/nfs/metadata. You also need to set proper sharing permissions for these folders as they’ll be
shared over NFS:

$> mkdir -p /var/nfs/data /var/nfs/metadata
$> chmod -R 777 /var/nfs/

Now you need to update your /etc/exports file. This is the file that configures network permissions and rwx permis-
sions for NFS access. By default, Ubuntu applies the no_subtree_check option, so we declared both folders with the
same permissions, even though they’re in the same tree:

$> sudo vim /etc/exports

In this file, add the following lines:

/var/nfs/data 10.200.15.96(rw,sync,no_root_squash) 10.200.15.97(rw,sync,no_
→˓root_squash)
/var/nfs/metadata 10.200.15.96(rw,sync,no_root_squash) 10.200.15.97(rw,sync,no_
→˓root_squash)

Export this new NFS table:

$> sudo exportfs -a

Eventually, you need to allow for NFS mount from Docker volumes on other machines. You need to change the
Docker config in /lib/systemd/system/docker.service:

$> sudo vim /lib/systemd/system/docker.service

In this file, change the MountFlags option:

6.1. High Availability 33

http://www.zenko.io/cloudserver/

scality-zenko-cloudserver, Release 7.0.0

MountFlags=shared

Now you just need to restart the NFS server and docker daemons so your changes apply.

On Ubuntu 14.04

Restart your NFS Server and docker services:

$> sudo service nfs-kernel-server restart
$> sudo service docker restart

On CentOS 7

Restart your NFS Server and docker daemons:

$> sudo systemctl restart nfs-server
$> sudo systemctl daemon-reload
$> sudo systemctl restart docker

6.1.3 Set up your Docker Swarm service

On All Machines

On Ubuntu 14.04 and CentOS 7

We will now set up the Docker volumes that will be mounted to the NFS Server and serve as data and metadata storage
for Zenko CloudServer. These two commands have to be replicated on all machines:

$> docker volume create --driver local --opt type=nfs --opt o=addr=10.200.15.113,rw --
→˓opt device=:/var/nfs/data --name data
$> docker volume create --driver local --opt type=nfs --opt o=addr=10.200.15.113,rw --
→˓opt device=:/var/nfs/metadata --name metadata

There is no need to “”docker exec” these volumes to mount them: the Docker Swarm manager will do it when the
Docker service will be started.

On Server

To start a Docker service on a Docker Swarm cluster, you first have to initialize that cluster (i.e.: define a manager),
then have the workers/nodes join in, and then start the service. Initialize the swarm cluster, and look at the response:

$> docker swarm init --advertise-addr 10.200.15.113

Swarm initialized: current node (db2aqfu3bzfzzs9b1kfeaglmq) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-5yxxencrdoelr7mpltljn325uz4v6fe1gojl14lzceij3nujzu-

→˓2vfs9u6ipgcq35r90xws3stka \

(continues on next page)

34 Chapter 6. Integrations

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

10.200.15.113:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
→˓instructions.

On Clients

Simply copy/paste the command provided by your docker swarm init. When all goes well, you’ll get something like
this:

$> docker swarm join --token SWMTKN-1-
→˓5yxxencrdoelr7mpltljn325uz4v6fe1gojl14lzceij3nujzu-2vfs9u6ipgcq35r90xws3stka 10.200.
→˓15.113:2377

This node joined a swarm as a worker.

On Server

Start the service on your swarm cluster!

$> docker service create --name s3 --replicas 1 --mount type=volume,source=data,
→˓target=/usr/src/app/localData --mount type=volume,source=metadata,target=/usr/src/
→˓app/localMetadata -p 8000:8000 scality/s3server

If you run a docker service ls, you should have the following output:

$> docker service ls
ID NAME MODE REPLICAS IMAGE
ocmggza412ft s3 replicated 1/1 scality/s3server:latest

If your service won’t start, consider disabling apparmor/SELinux.

6.1.4 Testing your High Availability S3Server

On All Machines

On Ubuntu 14.04 and CentOS 7

Try to find out where your Scality Zenko CloudServer is actually running using the docker ps command. It can be on
any node of the swarm cluster, manager or worker. When you find it, you can kill it, with docker stop <container
id> and you’ll see it respawn on a different node of the swarm cluster. Now you see, if one of your servers falls, or if
docker stops unexpectedly, your end user will still be able to access your local Zenko CloudServer.

6.1.5 Troubleshooting

To troubleshoot the service you can run:

6.1. High Availability 35

scality-zenko-cloudserver, Release 7.0.0

$> docker service ps s3docker service ps s3
ID NAME IMAGE NODE
→˓ DESIRED STATE CURRENT STATE ERROR
0ar81cw4lvv8chafm8pw48wbc s3.1 scality/s3server localhost.localdomain.
→˓localdomain Running Running 7 days ago
cvmf3j3bz8w6r4h0lf3pxo6eu _ s3.1 scality/s3server localhost.localdomain.
→˓localdomain Shutdown Failed 7 days ago "task: non-zero exit (137)"

If the error is truncated it is possible to have a more detailed view of the error by inspecting the docker task ID:

$> docker inspect cvmf3j3bz8w6r4h0lf3pxo6eu

6.1.6 Off you go!

Let us know what you use this functionality for, and if you’d like any specific developments around it. Or, even better:
come and contribute to our Github repository! We look forward to meeting you!

6.2 S3FS

Export your buckets as a filesystem with s3fs on top of Zenko CloudServer

s3fs is an open source tool that allows you to mount an S3 bucket on a filesystem-like backend. It is available both on
Debian and RedHat distributions. For this tutorial, we used an Ubuntu 14.04 host to deploy and use s3fs over Scality’s
Zenko CloudServer.

6.2.1 Deploying Zenko CloudServer with SSL

First, you need to deploy Zenko CloudServer. This can be done very easily via our DockerHub page (you want to
run it with a file backend).

Note: - If you don’t have docker installed on your machine, here are the ‘instructions to install it for your
distribution <https://docs.docker.com/engine/installation/>‘__

You also necessarily have to set up SSL with Zenko CloudServer to use s3fs. We have a nice tutorial to help you do it.

6.2.2 s3fs setup

Installing s3fs

s3fs has quite a few dependencies. As explained in their README, the following commands should install everything
for Ubuntu 14.04:

$> sudo apt-get install automake autotools-dev g++ git libcurl4-gnutls-dev
$> sudo apt-get install libfuse-dev libssl-dev libxml2-dev make pkg-config

Now you want to install s3fs per se:

$> git clone https://github.com/s3fs-fuse/s3fs-fuse.git
$> cd s3fs-fuse
$> ./autogen.sh
$> ./configure

(continues on next page)

36 Chapter 6. Integrations

https://github.com/scality/s3/
https://github.com/s3fs-fuse/s3fs-fuse
https://hub.docker.com/r/scality/s3server/
https://s3.scality.com/v1.0/page/scality-with-ssl
https://github.com/s3fs-fuse/s3fs-fuse/blob/master/README.md#installation

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

$> make
$> sudo make install

Check that s3fs is properly installed by checking its version. it should answer as below:

$> s3fs --version

Amazon Simple Storage Service File System V1.80(commit:d40da2c) with OpenSSL

Configuring s3fs

s3fs expects you to provide it with a password file. Our file is /etc/passwd-s3fs. The structure for this file is
ACCESSKEYID:SECRETKEYID, so, for S3Server, you can run:

$> echo 'accessKey1:verySecretKey1' > /etc/passwd-s3fs
$> chmod 600 /etc/passwd-s3fs

6.2.3 Using Zenko CloudServer with s3fs

First, you’re going to need a mountpoint; we chose /mnt/tests3fs:

$> mkdir /mnt/tests3fs

Then, you want to create a bucket on your local Zenko CloudServer; we named it tests3fs:

$> s3cmd mb s3://tests3fs

Note: *- If you've never used s3cmd with our Zenko CloudServer, our README
provides you with a `recommended
config <https://github.com/scality/S3/blob/master/README.md#s3cmd>`__*

Now you can mount your bucket to your mountpoint with s3fs:

$> s3fs tests3fs /mnt/tests3fs -o passwd_file=/etc/passwd-s3fs -o url="https://s3.
→˓scality.test:8000/" -o use_path_request_style

If you're curious, the structure of this command is
``s3fs BUCKET_NAME PATH/TO/MOUNTPOINT -o OPTIONS``\ *, and the
options are mandatory and serve the following purposes:

* ``passwd_file``\ *: specifiy path to password file;

* ``url``\ *: specify the hostname used by your SSL provider;

* ``use_path_request_style``\ *: force path style (by default, s3fs
uses subdomains (DNS style)).*

From now on, you can either add files to your mountpoint, or add objects to your bucket, and they’ll show in the other.
For example, let’s‘ create two files, and then a directory with a file in our mountpoint:

$> touch /mnt/tests3fs/file1 /mnt/tests3fs/file2
$> mkdir /mnt/tests3fs/dir1
$> touch /mnt/tests3fs/dir1/file3

6.2. S3FS 37

scality-zenko-cloudserver, Release 7.0.0

Now, I can use s3cmd to show me what is actually in S3Server:

$> s3cmd ls -r s3://tests3fs

2017-02-28 17:28 0 s3://tests3fs/dir1/
2017-02-28 17:29 0 s3://tests3fs/dir1/file3
2017-02-28 17:28 0 s3://tests3fs/file1
2017-02-28 17:28 0 s3://tests3fs/file2

Now you can enjoy a filesystem view on your local Zenko CloudServer!

6.3 Duplicity

How to backup your files with Zenko CloudServer.

6.3.1 Installing

Installing Duplicity and its dependencies

Second, you want to install Duplicity. You have to download this tarball, decompress it, and then checkout the
README inside, which will give you a list of dependencies to install. If you’re using Ubuntu 14.04, this is your lucky
day: here is a lazy step by step install.

$> apt-get install librsync-dev gnupg
$> apt-get install python-dev python-pip python-lockfile
$> pip install -U boto

Then you want to actually install Duplicity:

$> tar zxvf duplicity-0.7.11.tar.gz
$> cd duplicity-0.7.11
$> python setup.py install

6.3.2 Using

Testing your installation

First, we’re just going to quickly check that Zenko CloudServer is actually running. To do so, simply run $> docker
ps . You should see one container named scality/s3server. If that is not the case, try $> docker start
s3server, and check again.

Secondly, as you probably know, Duplicity uses a module called Boto to send requests to S3. Boto requires a configu-
ration file located in ‘‘/etc/boto.cfg‘‘ to have your credentials and preferences. Here is a minimalistic config that you
can finetune following these instructions.

[Credentials]
aws_access_key_id = accessKey1
aws_secret_access_key = verySecretKey1

[Boto]
If using SSL, set to True
is_secure = False

(continues on next page)

38 Chapter 6. Integrations

http://duplicity.nongnu.org/index.html
https://code.launchpad.net/duplicity/0.7-series/0.7.11/+download/duplicity-0.7.11.tar.gz
http://boto.cloudhackers.com/en/latest/getting_started.html
http://boto.cloudhackers.com/en/latest/getting_started.html

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

If using SSL, unmute and provide absolute path to local CA certificate
ca_certificates_file = /absolute/path/to/ca.crt

Note: *If you want to set up SSL with Zenko CloudServer, check out our
`tutorial <http://link/to/SSL/tutorial>`__*

At this point, we’ve met all the requirements to start running Zenko CloudServer as a backend to Duplicity. So we
should be able to back up a local folder/file to local S3. Let’s try with the duplicity decompressed folder:

$> duplicity duplicity-0.7.11 "s3://127.0.0.1:8000/testbucket/"

Note: *Duplicity will prompt you for a symmetric encryption
passphrase. Save it somewhere as you will need it to recover your
data. Alternatively, you can also add the ``--no-encryption`` flag
and the data will be stored plain.*

If this command is succesful, you will get an output looking like this:

--------------[Backup Statistics]--------------
StartTime 1486486547.13 (Tue Feb 7 16:55:47 2017)
EndTime 1486486547.40 (Tue Feb 7 16:55:47 2017)
ElapsedTime 0.27 (0.27 seconds)
SourceFiles 388
SourceFileSize 6634529 (6.33 MB)
NewFiles 388
NewFileSize 6634529 (6.33 MB)
DeletedFiles 0
ChangedFiles 0
ChangedFileSize 0 (0 bytes)
ChangedDeltaSize 0 (0 bytes)
DeltaEntries 388
RawDeltaSize 6392865 (6.10 MB)
TotalDestinationSizeChange 2003677 (1.91 MB)
Errors 0

Congratulations! You can now backup to your local S3 through duplicity :)

Automating backups

Now you probably want to back up your files periodically. The easiest way to do this is to write a bash script and add
it to your crontab. Here is my suggestion for such a file:

#!/bin/bash

Export your passphrase so you don't have to type anything
export PASSPHRASE="mypassphrase"

If you want to use a GPG Key, put it here and unmute the line below
#GPG_KEY=

Define your backup bucket, with localhost specified
DEST="s3://127.0.0.1:8000/testbuckets3server/"

Define the absolute path to the folder you want to backup

(continues on next page)

6.3. Duplicity 39

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

SOURCE=/root/testfolder

Set to "full" for full backups, and "incremental" for incremental backups
Warning: you have to perform one full backup befor you can perform
incremental ones on top of it
FULL=incremental

How long to keep backups for; if you don't want to delete old
backups, keep empty; otherwise, syntax is "1Y" for one year, "1M"
for one month, "1D" for one day
OLDER_THAN="1Y"

is_running checks whether duplicity is currently completing a task
is_running=$(ps -ef | grep duplicity | grep python | wc -l)

If duplicity is already completing a task, this will simply not run
if [$is_running -eq 0]; then

echo "Backup for ${SOURCE} started"

If you want to delete backups older than a certain time, we do it here
if ["$OLDER_THAN" != ""]; then

echo "Removing backups older than ${OLDER_THAN}"
duplicity remove-older-than ${OLDER_THAN} ${DEST}

fi

This is where the actual backup takes place
echo "Backing up ${SOURCE}..."
duplicity ${FULL} \

${SOURCE} ${DEST}
If you're using GPG, paste this in the command above
--encrypt-key=${GPG_KEY} --sign-key=${GPG_KEY} \
If you want to exclude a subfolder/file, put it below and
paste this
in the command above
--exclude=/${SOURCE}/path_to_exclude \

echo "Backup for ${SOURCE} complete"
echo "------------------------------------"

fi
Forget the passphrase...
unset PASSPHRASE

So let’s say you put this file in /usr/local/sbin/backup.sh. Next you want to run crontab -e and paste
your configuration in the file that opens. If you’re unfamiliar with Cron, here is a good How To. The folder I’m
backing up is a folder I modify permanently during my workday, so I want incremental backups every 5mn from 8AM
to 9PM monday to friday. Here is the line I will paste in my crontab:

*/5 8-20 * * 1-5 /usr/local/sbin/backup.sh

Now I can try and add / remove files from the folder I’m backing up, and I will see incremental backups in my bucket.

40 Chapter 6. Integrations

https://help.ubuntu.com/community/CronHowto

CHAPTER 7

Architecture

7.1 Versioning

This document describes Zenko CloudServer’s support for the AWS S3 Bucket Versioning feature.

7.1.1 AWS S3 Bucket Versioning

See AWS documentation for a description of the Bucket Versioning feature:

• Bucket Versioning

• Object Versioning

This document assumes familiarity with the details of Bucket Versioning, including null versions and delete markers,
described in the above links.

7.1.2 Implementation of Bucket Versioning in Zenko CloudServer

Overview of Metadata and API Component Roles

Each version of an object is stored as a separate key in metadata. The S3 API interacts with the metadata backend to
store, retrieve, and delete version metadata.

The implementation of versioning within the metadata backend is naive. The metadata backend does not evaluate any
information about bucket or version state (whether versioning is enabled or suspended, and whether a version is a
null version or delete marker). The S3 front-end API manages the logic regarding versioning information, and sends
instructions to metadata to handle the basic CRUD operations for version metadata.

The role of the S3 API can be broken down into the following:

• put and delete version data

• store extra information about a version, such as whether it is a delete marker or null version, in the object’s
metadata

41

http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ObjectVersioning.html

scality-zenko-cloudserver, Release 7.0.0

• send instructions to metadata backend to store, retrieve, update and delete version metadata based on bucket
versioning state and version metadata

• encode version ID information to return in responses to requests, and decode version IDs sent in requests

The implementation of Bucket Versioning in S3 is described in this document in two main parts. The first section, “Im-
plementation of Bucket Versioning in Metadata”, describes the way versions are stored in metadata, and the metadata
options for manipulating version metadata.

The second section, “Implementation of Bucket Versioning in API”, describes the way the metadata options are used
in the API within S3 actions to create new versions, update their metadata, and delete them. The management of null
versions and creation of delete markers are also described in this section.

7.1.3 Implementation of Bucket Versioning in Metadata

As mentioned above, each version of an object is stored as a separate key in metadata. We use version identifiers as the
suffix for the keys of the object versions, and a special version (the “Master Version”) to represent the latest version.

An example of what the metadata keys might look like for an object foo/bar with three versions (with . representing
a null character):

key
foo/bar
foo/bar.098506163554375999999PARIS 0.a430a1f85c6ec
foo/bar.098506163554373999999PARIS 0.41b510cd0fdf8
foo/bar.098506163554373999998PARIS 0.f9b82c166f695

The most recent version created is represented above in the key foo/bar and is the master version. This special
version is described further in the section “Master Version”.

Version ID and Metadata Key Format

The version ID is generated by the metadata backend, and encoded in a hexadecimal string format by S3 before sending
a response to a request. S3 also decodes the hexadecimal string received from a request before sending to metadata to
retrieve a particular version.

The format of a version_id is: ts rep_group_id seq_id where:

• ts: is the combination of epoch and an increasing number

• rep_group_id: is the name of deployment(s) considered one unit used for replication

• seq_id: is a unique value based on metadata information.

The format of a key in metadata for a version is:

object_name separator version_id where:

• object_name: is the key of the object in metadata

• separator: we use the null character (0x00 or \0) as the separator between the object_name and the
version_id of a key

• version_id: is the version identifier; this encodes the ordering information in the format described above as
metadata orders keys alphabetically

An example of a key in metadata: foo\01234567890000777PARIS 1234.123456 indicating that this specific
version of foo was the 000777th entry created during the epoch 1234567890 in the replication group PARIS with
1234.123456 as seq_id.

42 Chapter 7. Architecture

scality-zenko-cloudserver, Release 7.0.0

Master Version

We store a copy of the latest version of an object’s metadata using object_name as the key; this version is called
the master version. The master version of each object facilitates the standard GET operation, which would otherwise
need to scan among the list of versions of an object for its latest version.

The following table shows the layout of all versions of foo in the first example stored in the metadata (with dot .
representing the null separator):

key value
foo B
foo.v2 B
foo.v1 A

Metadata Versioning Options

Zenko CloudServer sends instructions to the metadata engine about whether to create a new version or overwrite,
retrieve, or delete a specific version by sending values for special options in PUT, GET, or DELETE calls to metadata.
The metadata engine can also list versions in the database, which is used by Zenko CloudServer to list object versions.

These only describe the basic CRUD operations that the metadata engine can handle. How these options are used
by the S3 API to generate and update versions is described more comprehensively in “Implementation of Bucket
Versioning in API”.

Note: all operations (PUT and DELETE) that generate a new version of an object will return the version_id of the
new version to the API.

PUT

• no options: original PUT operation, will update the master version

• versioning: true create a new version of the object, then update the master version with this version.

• versionId: <versionId> create or update a specific version (for updating version’s ACL or tags, or
remote updates in geo-replication)

– if the version identified by versionId happens to be the latest version, the master version will be updated
as well

– if the master version is not as recent as the version identified by versionId, as may happen with cross-
region replication, the master will be updated as well

– note that with versionId set to an empty string '', it will overwrite the master version only (same as no
options, but the master version will have a versionId property set in its metadata like any other version).
The versionId will never be exposed to an external user, but setting this internal-only versionID en-
ables Zenko CloudServer to find this version later if it is no longer the master. This option of versionId
set to '' is used for creating null versions once versioning has been suspended, which is discussed in
“Null Version Management”.

In general, only one option is used at a time. When versionId and versioning are both set, only the
versionId option will have an effect.

DELETE

• no options: original DELETE operation, will delete the master version

7.1. Versioning 43

scality-zenko-cloudserver, Release 7.0.0

• versionId: <versionId> delete a specific version

A deletion targeting the latest version of an object has to:

• delete the specified version identified by versionId

• replace the master version with a version that is a placeholder for deletion

– this version contains a special keyword, ‘isPHD’, to indicate the master version was deleted and needs
to be updated

• initiate a repair operation to update the value of the master version:

– involves listing the versions of the object and get the latest version to replace the placeholder delete version

– if no more versions exist, metadata deletes the master version, removing the key from metadata

Note: all of this happens in metadata before responding to the front-end api, and only when the metadata engine is
instructed by Zenko CloudServer to delete a specific version or the master version. See section “Delete Markers” for
a description of what happens when a Delete Object request is sent to the S3 API.

GET

• no options: original GET operation, will get the master version

• versionId: <versionId> retrieve a specific version

The implementation of a GET operation does not change compared to the standard version. A standard GET without
versioning information would get the master version of a key. A version-specific GET would retrieve the specific
version identified by the key for that version.

LIST

For a standard LIST on a bucket, metadata iterates through the keys by using the separator (\0, represented by . in
examples) as an extra delimiter. For a listing of all versions of a bucket, there is no change compared to the original
listing function. Instead, the API component returns all the keys in a List Objects call and filters for just the keys of
the master versions in a List Object Versions call.

For example, a standard LIST operation against the keys in a table below would return from metadata the list of [
foo/bar, bar, qux/quz, quz].

key
foo/bar
foo/bar.v2
foo/bar.v1
bar
qux/quz
qux/quz.v2
qux/quz.v1
quz
quz.v2
quz.v1

7.1.4 Implementation of Bucket Versioning in API

44 Chapter 7. Architecture

scality-zenko-cloudserver, Release 7.0.0

Object Metadata Versioning Attributes

To access all the information needed to properly handle all cases that may exist in versioned operations, the API stores
certain versioning-related information in the metadata attributes of each version’s object metadata.

These are the versioning-related metadata properties:

• isNull: whether the version being stored is a null version.

• nullVersionId: the unencoded version ID of the latest null version that existed before storing a non-null
version.

• isDeleteMarker: whether the version being stored is a delete marker.

The metadata engine also sets one additional metadata property when creating the version.

• versionId: the unencoded version ID of the version being stored.

Null versions and delete markers are described in further detail in their own subsections.

Creation of New Versions

When versioning is enabled in a bucket, APIs which normally result in the creation of objects, such as Put Object,
Complete Multipart Upload and Copy Object, will generate new versions of objects.

Zenko CloudServer creates a new version and updates the master version using the versioning: true option
in PUT calls to the metadata engine. As an example, when two consecutive Put Object requests are sent to the Zenko
CloudServer for a versioning-enabled bucket with the same key names, there are two corresponding metadata PUT
calls with the versioning option set to true.

The PUT calls to metadata and resulting keys are shown below:

(1) PUT foo (first put), versioning: true

key value
foo A
foo.v1 A

(2) PUT foo (second put), versioning: true

key value
foo B
foo.v2 B
foo.v1 A

Null Version Management

In a bucket without versioning, or when versioning is suspended, putting an object with the same name twice should
result in the previous object being overwritten. This is managed with null versions.

Only one null version should exist at any given time, and it is identified in Zenko CloudServer requests and responses
with the version id “null”.

7.1. Versioning 45

scality-zenko-cloudserver, Release 7.0.0

Case 1: Putting Null Versions

With respect to metadata, since the null version is overwritten by subsequent null versions, the null version is initially
stored in the master key alone, as opposed to being stored in the master key and a new version. Zenko CloudServer
checks if versioning is suspended or has never been configured, and sets the versionId option to '' in PUT calls
to the metadata engine when creating a new null version.

If the master version is a null version, Zenko CloudServer also sends a DELETE call to metadata prior to the PUT,
in order to clean up any pre-existing null versions which may, in certain edge cases, have been stored as a separate
version.1

The tables below summarize the calls to metadata and the resulting keys if we put an object ‘foo’ twice, when version-
ing has not been enabled or is suspended.

(1) PUT foo (first put), versionId: ''

key value
foo (null) A

(2A) DELETE foo (clean-up delete before second put), versionId: <version id of master version>

key value

(2B) PUT foo (second put), versionId: ''

key value
foo (null) B

The S3 API also sets the isNull attribute to true in the version metadata before storing the metadata for these null
versions.

Case 2: Preserving Existing Null Versions in Versioning-Enabled Bucket

Null versions are preserved when new non-null versions are created after versioning has been enabled or re-enabled.

If the master version is the null version, the S3 API preserves the current null version by storing it as a new key (3A)
in a separate PUT call to metadata, prior to overwriting the master version (3B). This implies the null version may
not necessarily be the latest or master version.

To determine whether the master version is a null version, the S3 API checks if the master version’s isNull property
is set to true, or if the versionId attribute of the master version is undefined (indicating it is a null version that
was put before bucket versioning was configured).

Continuing the example from Case 1, if we enabled versioning and put another object, the calls to metadata and
resulting keys would resemble the following:

(3A) PUT foo, versionId: <versionId of master version> if defined or <non-versioned object
id>

1 Some examples of these cases are: (1) when there is a null version that is the second-to-latest version, and the latest version has been deleted,
causing metadata to repair the master value with the value of the null version and (2) when putting object tag or ACL on a null version that is the
master version, as explained in “Behavior of Object-Targeting APIs”.

46 Chapter 7. Architecture

scality-zenko-cloudserver, Release 7.0.0

key value
foo B
foo.v1 (null) B

(3B) PUT foo, versioning: true

key value
foo C
foo.v2 C
foo.v1 (null) B

To prevent issues with concurrent requests, Zenko CloudServer ensures the null version is stored with the same ver-
sion ID by using versionId option. Zenko CloudServer sets the versionId option to the master version’s
versionId metadata attribute value during the PUT. This creates a new version with the same version ID of the
existing null master version.

The null version’s versionId attribute may be undefined because it was generated before the bucket versioning was
configured. In that case, a version ID is generated using the max epoch and sequence values possible so that the null
version will be properly ordered as the last entry in a metadata listing. This value (“non-versioned object id”) is used
in the PUT call with the versionId option.

Case 3: Overwriting a Null Version That is Not Latest Version

Normally when versioning is suspended, Zenko CloudServer uses the versionId: '' option in a PUT to meta-
data to create a null version. This also overwrites an existing null version if it is the master version.

However, if there is a null version that is not the latest version, Zenko CloudServer cannot rely on the versionId:
'' option will not overwrite the existing null version. Instead, before creating a new null version, the Zenko Cloud-
Server API must send a separate DELETE call to metadata specifying the version id of the current null version for
delete.

To do this, when storing a null version (3A above) before storing a new non-null version, Zenko CloudServer records
the version’s ID in the nullVersionId attribute of the non-null version. For steps 3A and 3B above, these are the
values stored in the nullVersionId of each version’s metadata:

(3A) PUT foo, versioning: true

key value value.nullVersionId
foo B undefined
foo.v1 (null) B undefined

(3B) PUT foo, versioning: true

key value value.nullVersionId
foo C v1
foo.v2 C v1
foo.v1 (null) B undefined

If defined, the nullVersionId of the master version is used with the versionId option in a DELETE call to
metadata if a Put Object request is received when versioning is suspended in a bucket.

(4A) DELETE foo, versionId: <nullVersionId of master version> (v1)

7.1. Versioning 47

scality-zenko-cloudserver, Release 7.0.0

key value
foo C
foo.v2 C

Then the master version is overwritten with the new null version:

(4B) PUT foo, versionId: ''

key value
foo (null) D
foo.v2 C

The nullVersionId attribute is also used to retrieve the correct version when the version ID “null” is specified in
certain object-level APIs, described further in the section “Null Version Mapping”.

Specifying Versions in APIs for Putting Versions

Since Zenko CloudServer does not allow an overwrite of existing version data, Put Object, Complete Multipart Upload
and Copy Object return 400 InvalidArgument if a specific version ID is specified in the request query, e.g. for
a PUT /foo?versionId=v1 request.

PUT Example

When Zenko CloudServer receives a request to PUT an object:

• It checks first if versioning has been configured

• If it has not been configured, Zenko CloudServer proceeds to puts the new data, puts the metadata by overwriting
the master version, and proceeds to delete any pre-existing data

If versioning has been configured, Zenko CloudServer checks the following:

Versioning Enabled

If versioning is enabled and there is existing object metadata:

• If the master version is a null version (isNull: true) or has no version ID (put before versioning was
configured):

– store the null version metadata as a new version

– create a new version and overwrite the master version

* set nullVersionId: version ID of the null version that was stored

If versioning is enabled and the master version is not null; or there is no existing object metadata:

• create a new version and store it, and overwrite the master version

Versioning Suspended

If versioning is suspended and there is existing object metadata:

• If the master version has no version ID:

48 Chapter 7. Architecture

scality-zenko-cloudserver, Release 7.0.0

– overwrite the master version with the new metadata (PUT versionId: '')

– delete previous object data

• If the master version is a null version:

– delete the null version using the versionId metadata attribute of the master version (PUT versionId:
<versionId of master object MD>)

– put a new null version (PUT versionId: '')

• If master is not a null version and nullVersionId is defined in the object’s metadata:

– delete the current null version metadata and data

– overwrite the master version with the new metadata

If there is no existing object metadata, create the new null version as the master version.

In each of the above cases, set isNull metadata attribute to true when creating the new null version.

Behavior of Object-Targeting APIs

API methods which can target existing objects or versions, such as Get Object, Head Object, Get Object ACL, Put
Object ACL, Copy Object and Copy Part, will perform the action on the latest version of an object if no version ID is
specified in the request query or relevant request header (x-amz-copy-source-version-id for Copy Object
and Copy Part APIs).

Two exceptions are the Delete Object and Multi-Object Delete APIs, which will instead attempt to create delete
markers, described in the following section, if no version ID is specified.

No versioning options are necessary to retrieve the latest version from metadata, since the master version is stored
in a key with the name of the object. However, when updating the latest version, such as with the Put Object ACL
API, Zenko CloudServer sets the versionId option in the PUT call to metadata to the value stored in the object
metadata’s versionId attribute. This is done in order to update the metadata both in the master version and the
version itself, if it is not a null version.2

When a version id is specified in the request query for these APIs, e.g. GET /foo?versionId=v1, Zenko Cloud-
Server will attempt to decode the version ID and perform the action on the appropriate version. To do so, the API sets
the value of the versionId option to the decoded version ID in the metadata call.

Delete Markers

If versioning has not been configured for a bucket, the Delete Object and Multi-Object Delete APIs behave as their
standard APIs.

If versioning has been configured, Zenko CloudServer deletes object or version data only if a specific version ID is
provided in the request query, e.g. DELETE /foo?versionId=v1.

If no version ID is provided, S3 creates a delete marker by creating a 0-byte version with the metadata attribute
isDeleteMarker: true. The S3 API will return a 404 NoSuchKey error in response to requests getting or
heading an object whose latest version is a delete maker.

To restore a previous version as the latest version of an object, the delete marker must be deleted, by the same process
as deleting any other version.

2 If it is a null version, this call will overwrite the null version if it is stored in its own key (foo\0<versionId>). If the null version is stored
only in the master version, this call will both overwrite the master version and create a new key (foo\0<versionId>), resulting in the edge case
referred to by the previous footnote1.

7.1. Versioning 49

scality-zenko-cloudserver, Release 7.0.0

The response varies when targeting an object whose latest version is a delete marker for other object-level APIs that
can target existing objects and versions, without specifying the version ID.

• Get Object, Head Object, Get Object ACL, Object Copy and Copy Part return 404 NoSuchKey.

• Put Object ACL and Put Object Tagging return 405 MethodNotAllowed.

These APIs respond to requests specifying the version ID of a delete marker with the error 405
MethodNotAllowed, in general. Copy Part and Copy Object respond with 400 Invalid Request.

See section “Delete Example” for a summary.

Null Version Mapping

When the null version is specified in a request with the version ID “null”, the S3 API must use the nullVersionId
stored in the latest version to retrieve the current null version, if the null version is not the latest version.

Thus, getting the null version is a two step process:

1. Get the latest version of the object from metadata. If the latest version’s isNull property is true, then use
the latest version’s metadata. Otherwise,

2. Get the null version of the object from metadata, using the internal version ID of the current null version stored
in the latest version’s nullVersionId metadata attribute.

DELETE Example

The following steps are used in the delete logic for delete marker creation:

• If versioning has not been configured: attempt to delete the object

• If request is version-specific delete request: attempt to delete the version

• otherwise, if not a version-specific delete request and versioning has been configured:

– create a new 0-byte content-length version

– in version’s metadata, set a ‘isDeleteMarker’ property to true

• Return the version ID of any version deleted or any delete marker created

• Set response header x-amz-delete-marker to true if a delete marker was deleted or created

The Multi-Object Delete API follows the same logic for each of the objects or versions listed in an xml request. Note
that a delete request can result in the creation of a deletion marker even if the object requested to delete does not exist
in the first place.

Object-level APIs which can target existing objects and versions perform the following checks regarding delete mark-
ers:

• If not a version-specific request and versioning has been configured, check the metadata of the latest version

• If the ‘isDeleteMarker’ property is set to true, return 404 NoSuchKey or 405 MethodNotAllowed

• If it is a version-specific request, check the object metadata of the requested version

• If the isDeleteMarker property is set to true, return 405 MethodNotAllowed or 400
InvalidRequest

50 Chapter 7. Architecture

scality-zenko-cloudserver, Release 7.0.0

7.2 Data-metadata daemon Architecture and Operational guide

This document presents the architecture of the data-metadata daemon (dmd) used for the community edition of Zenko
CloudServer. It also provides a guide on how to operate it.

The dmd is responsible for storing and retrieving Zenko CloudServer data and metadata, and is accessed by Zenko
CloudServer connectors through socket.io (metadata) and REST (data) APIs.

It has been designed such that more than one Zenko CloudServer connector can access the same buckets by commu-
nicating with the dmd. It also means that the dmd can be hosted on a separate container or machine.

7.2.1 Operation

Startup

The simplest deployment is still to launch with npm start, this will start one instance of the Zenko CloudServer
connector and will listen on the locally bound dmd ports 9990 and 9991 (by default, see below).

The dmd can be started independently from the Zenko CloudServer by running this command in the Zenko Cloud-
Server directory:

npm run start_dmd

This will open two ports:

• one is based on socket.io and is used for metadata transfers (9990 by default)

• the other is a REST interface used for data transfers (9991 by default)

Then, one or more instances of Zenko CloudServer without the dmd can be started elsewhere with:

npm run start_s3server

Configuration

Most configuration happens in config.json for Zenko CloudServer, local storage paths can be changed where the
dmd is started using environment variables, like before: S3DATAPATH and S3METADATAPATH.

In config.json, the following sections are used to configure access to the dmd through separate configuration of
the data and metadata access:

"metadataClient": {
"host": "localhost",
"port": 9990

},
"dataClient": {

"host": "localhost",
"port": 9991

},

To run a remote dmd, you have to do the following:

• change both "host" attributes to the IP or host name where the dmd is run.

• Modify the "bindAddress" attributes in "metadataDaemon" and "dataDaemon" sections where the
dmd is run to accept remote connections (e.g. "::")

7.2. Data-metadata daemon Architecture and Operational guide 51

scality-zenko-cloudserver, Release 7.0.0

7.2.2 Architecture

This section gives a bit more insight on how it works internally.

Fig. 1: ./images/data_metadata_daemon_arch.png

Metadata on socket.io

This communication is based on an RPC system based on socket.io events sent by Zenko CloudServerconnectors,
received by the DMD and acknowledged back to the Zenko CloudServer connector.

The actual payload sent through socket.io is a JSON-serialized form of the RPC call name and parameters, along with
some additional information like the request UIDs, and the sub-level information, sent as object attributes in the JSON
request.

With introduction of versioning support, the updates are now gathered in the dmd for some number of milliseconds
max, before being batched as a single write to the database. This is done server-side, so the API is meant to send
individual updates.

Four RPC commands are available to clients: put, get, del and createReadStream. They more or less map
the parameters accepted by the corresponding calls in the LevelUp implementation of LevelDB. They differ in the
following:

• The sync option is ignored (under the hood, puts are gathered into batches which have their sync property
enforced when they are committed to the storage)

52 Chapter 7. Architecture

scality-zenko-cloudserver, Release 7.0.0

• Some additional versioning-specific options are supported

• createReadStream becomes asynchronous, takes an additional callback argument and returns the stream
in the second callback parameter

Debugging the socket.io exchanges can be achieved by running the daemon with DEBUG='socket.io*' environ-
ment variable set.

One parameter controls the timeout value after which RPC commands sent end with a timeout error, it can be changed
either:

• via the DEFAULT_CALL_TIMEOUT_MS option in lib/network/rpc/rpc.js

• or in the constructor call of the MetadataFileClient object (in lib/metadata/bucketfile/
backend.js as callTimeoutMs.

Default value is 30000.

A specific implementation deals with streams, currently used for listing a bucket. Streams emit "stream-data"
events that pack one or more items in the listing, and a special “stream-end” event when done. Flow control is
achieved by allowing a certain number of “in flight” packets that have not received an ack yet (5 by default). Two
options can tune the behavior (for better throughput or getting it more robust on weak networks), they have to be set
in mdserver.js file directly, as there is no support in config.json for now for those options:

• streamMaxPendingAck: max number of pending ack events not yet received (default is 5)

• streamAckTimeoutMs: timeout for receiving an ack after an output stream packet is sent to the client
(default is 5000)

Data exchange through the REST data port

Data is read and written with REST semantic.

The web server recognizes a base path in the URL of /DataFile to be a request to the data storage service.

PUT

A PUT on /DataFile URL and contents passed in the request body will write a new object to the storage.

On success, a 201 Created response is returned and the new URL to the object is returned via the Location
header (e.g. Location: /DataFile/50165db76eecea293abfd31103746dadb73a2074). The raw
key can then be extracted simply by removing the leading /DataFile service information from the returned URL.

GET

A GET is simply issued with REST semantic, e.g.:

GET /DataFile/50165db76eecea293abfd31103746dadb73a2074 HTTP/1.1

A GET request can ask for a specific range. Range support is complete except for multiple byte ranges.

DELETE

DELETE is similar to GET, except that a 204 No Content response is returned on success.

7.2. Data-metadata daemon Architecture and Operational guide 53

scality-zenko-cloudserver, Release 7.0.0

7.3 Listing

7.3.1 Listing Types

We use three different types of metadata listing for various operations. Here are the scenarios we use each for:

• ‘Delimiter’ - when no versions are possible in the bucket since it is an internally-used only bucket which is not
exposed to a user. Namely,

1. to list objects in the “user’s bucket” to respond to a GET SERVICE request and

2. to do internal listings on an MPU shadow bucket to complete multipart upload operations.

• ‘DelimiterVersion’ - to list all versions in a bucket

• ‘DelimiterMaster’ - to list just the master versions of objects in a bucket

7.3.2 Algorithms

The algorithms for each listing type can be found in the open-source scality/Arsenal repository, in lib/algos/list.

7.4 Encryption

With CloudServer, there are two possible methods of at-rest encryption. (1) We offer bucket level encryption where
Scality CloudServer itself handles at-rest encryption for any object that is in an ‘encrypted’ bucket, regardless of what
the location-constraint for the data is and (2) If the location-constraint specified for the data is of type AWS, you can
choose to use AWS server side encryption.

Note: bucket level encryption is not available on the standard AWS S3 protocol, so normal AWS S3 clients will not
provide the option to send a header when creating a bucket. We have created a simple tool to enable you to easily
create an encrypted bucket.

7.4.1 Example:

Creating encrypted bucket using our encrypted bucket tool in the bin directory

./create_encrypted_bucket.js -a accessKey1 -k verySecretKey1 -b bucketname -h
→˓localhost -p 8000

7.4.2 AWS backend

With real AWS S3 as a location-constraint, you have to configure the location-constraint as follows

"awsbackend": {
"type": "aws_s3",
"legacyAwsBehavior": true,
"details": {

"serverSideEncryption": true,
...

}
},

54 Chapter 7. Architecture

https://github.com/scality/Arsenal
https://github.com/scality/Arsenal/tree/master/lib/algos/list

scality-zenko-cloudserver, Release 7.0.0

Then, every time an object is put to that data location, we pass the following header to AWS:
x-amz-server-side-encryption: AES256

Note: due to these options, it is possible to configure encryption by both CloudServer and AWS S3 (if you put an
object to a CloudServer bucket which has the encryption flag AND the location-constraint for the data is AWS S3 with
serverSideEncryption set to true).

7.4. Encryption 55

scality-zenko-cloudserver, Release 7.0.0

56 Chapter 7. Architecture

CHAPTER 8

Add New Backend Storage To Zenko Cloudserver

This set of documents aims at bootstrapping developers with Zenko’s Cloudserver module, so they can then go on and
contribute features.

8.1 Adding support for data backends not supporting the S3 API

These backends abstract the complexity of multiple APIs to let users work on a single common namespace across
multiple clouds.

This documents aims at introducing you to the right files in Cloudserver (the Zenko stack’s subcomponent in charge
of API translation, among other things) to add support to your own backend of choice.

8.1.1 General configuration

There are a number of constants and environment variables to define to support a new data backend; here is a list and
where to find them:

/constants.js

• give your backend type a name, as part of the externalBackends object;

• specify whether versioning is implemented, as part of the versioningNotImplemented object;

/lib/Config.js

• this is where you should put common utility functions, like the ones to parse the location object from location-
Config.json;

• make sure you define environment variables (like GCP_SERVICE_EMAIL as we’ll use those internally for the
CI to test against the real remote backend;

57

scality-zenko-cloudserver, Release 7.0.0

/lib/data/external/{backendName}Client.js

• this file is where you’ll instantiate your backend client; this should be a class with a constructor taking the config
object built in /lib/Config.js as parameter;

• over time, you may need some utility functions which we’ve defined in the folder /api/apiUtils, and in the file
/lib/data/external/utils;

/lib/data/external/utils.js

• make sure to add options for sourceLocationConstraintType to be equal to the name you gave your backend in
/constants.js;

/lib/data/external/{BackendName}_lib/

• this folder is where you’ll put the functions needed for supporting your backend; keep your files as atomic as
possible;

/tests/locationConfig/locationConfigTests.json

• this file is where you’ll create location profiles to be used by your functional tests;

/lib/data/locationConstraintParser.js

• this is where you’ll instantiate your client if the operation the end user sent effectively writes to your backend;
everything happens inside the function parseLC(); you should add a condition that executes if locationObj.type
is the name of your backend (that you defined in constants.js), and instantiates a client of yours. See pseudocode
below, assuming location type name is ztore:

1 (...) //<1>
2 const ZtoreClient = require('./external/ZtoreClient');
3 const { config } = require('../Config'); //<1>
4

5 function parseLC(){ //<1>
6 (...) //<1>
7 Object.keys(config.locationConstraints).forEach(location => { //<1>
8 const locationObj = config.locationConstraints[location]; //<1>
9 (...) //<1>

10 if (locationObj.type === 'ztore' {
11 const ztoreEndpoint = config.getZtoreEndpoint(location);
12 const ztoreCredentials = config.getZtoreCredentials(location); //<2>
13 clients[location] = new ZtoreClient({
14 ztoreEndpoint,
15 ztoreCredentials,
16 ztoreBucketname: locationObj.details.ztoreBucketName,
17 bucketMatch: locationObj.details.BucketMatch,
18 dataStoreName: location,
19 }); //<3>
20 clients[location].clientType = 'ztore';
21 });
22 (...) //<1>
23 });
24 }

58 Chapter 8. Add New Backend Storage To Zenko Cloudserver

scality-zenko-cloudserver, Release 7.0.0

1. Code that is already there

2. You may need more utility functions depending on your backend specs

3. You may have more fields required in your constructor object depending on your backend specs

8.1.2 Operation of type PUT

PUT routes are usually where people get started, as it’s the easiest to check! Simply go on your remote backend
console and you’ll be able to see whether your object actually went up in the cloud. . .

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

• the function that is going to call your put() function is also called put(), and it’s defined in
/lib/data/multipleBackendGateway.js;

• define a function with signature like put(stream, size, keyContext, reqUids, callback); this is worth exploring a
bit more as these parameters are the same for all backends: //TODO: generate this from jsdoc

• stream: the stream of data you want to put in the cloud; if you’re unfamiliar with node.js streams, we suggest
you start training, as we use them a lot !

• size: the size of the object you’re trying to put;

• keyContext: an object with metadata about the operation; common entries are namespace, buckerName, owner,
cipherBundle, and tagging; if these are not sufficient for your integration, contact us to get architecture validation
before adding new entries;

• reqUids: the request unique ID used for logging;

• callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

• this is where you should put all utility functions for your PUT operation, and then import then in /lib/data/
external/{BackendName}Client.js, to keep your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/put/put{BackendName}js

• every contribution should come with thorough functional tests, showing nominal context gives expected be-
haviour, and error cases are handled in a way that is standard with the backend (including error messages and
code);

• the ideal setup is if you simulate your backend locally, so as not to be subjected to network flakiness in the CI;
however, we know there might not be mockups available for every client; if that is the case of your backend,
you may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

• where you’ll define a constant for your backend location matching your /tests/locationConfig/
locationConfigTests.json

8.1. Adding support for data backends not supporting the S3 API 59

scality-zenko-cloudserver, Release 7.0.0

• depending on your backend, the sample keys[] and associated made up objects may not work for you
(if your backend’s key format is different, for example); if that is the case, you should add a custom
utils.get{{BackendName}}keys() function returning ajusted keys[] to your tests.

8.1.3 Operation of type GET

GET routes are easy to test after PUT routes are implemented, hence why we’re covering them second.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

• the function that is going to call your get() function is also called get(), and it’s defined in
/lib/data/multipleBackendGateway.js;

• define a function with signature like get(objectGetInfo, range, reqUids, callback); this is worth exploring a bit
more as these parameters are the same for all backends:

//TODO: generate this from jsdoc

• objectGetInfo: a dictionary with two entries: key, the object key in the data store, and client, the data store name;

• range: the range of bytes you will get, for “get-by-range” operations (we recommend you do simple GETs first,
and then look at this);

• reqUids: the request unique ID used for logging;

• callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

• this is where you should put all utility functions for your GET operation, and then import then in
/lib/data/external/{{BackendName}}Client.js, to keep your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

• every contribution should come with thorough functional tests, showing nominal context gives expected be-
haviour, and error cases are handled in a way that is standard with the backend (including error messages and
code);

• the ideal setup is if you simulate your backend locally, so as not to be subjected to network flakiness in the CI;
however, we know there might not be mockups available for every client; if that is the case of your backend,
you may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note: You should need this section if you have followed the tutorial in order (that is, if you have covered the PUT
operation already)

• where you’ll define a constant for your backend location matching your /tests/locationConfig/
locationConfigTests.json

60 Chapter 8. Add New Backend Storage To Zenko Cloudserver

scality-zenko-cloudserver, Release 7.0.0

• depending on your backend, the sample keys[] and associated made up objects may not work for you
(if your backend’s key format is different, for example); if that is the case, you should add a custom
utils.get{{BackendName}}keys()

8.1.4 Operation of type DELETE

DELETE routes are easy to test after PUT routes are implemented, and they are similar to GET routes in our imple-
mentation, hence why we’re covering them third.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

• the function that is going to call your delete() function is also called delete(), and it’s defined in /lib/data/
multipleBackendGateway.js;

• define a function with signature like delete(objectGetInfo, reqUids, callback); this is worth exploring a bit more
as these parameters are the same for all backends:

//TODO: generate this from jsdoc

• objectGetInfo: a dictionary with two entries: key, the object key in the data store, and client, the data store
name;

• reqUids: the request unique ID used for logging;

• callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

• this is where you should put all utility functions for your DELETE operation, and then import then in
/lib/data/external/{{BackendName}}Client.js, to keep your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/delete/
delete{BackendName}js

• every contribution should come with thorough functional tests, showing nominal context gives expected be-
haviour, and error cases are handled in a way that is standard with the backend (including error messages and
code);

• the ideal setup is if you simulate your backend locally, so as not to be subjected to network flakiness in the CI;
however, we know there might not be mockups available for every client; if that is the case of your backend,
you may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note: You should need this section if you have followed the tutorial in order (that is, if you have covered the PUT
operation already)

• where you’ll define a constant for your backend location matching your /tests/locationConfig/
locationConfigTests.json

8.1. Adding support for data backends not supporting the S3 API 61

scality-zenko-cloudserver, Release 7.0.0

• depending on your backend, the sample keys[] and associated made up objects may not work for you
(if your backend’s key format is different, for example); if that is the case, you should add a custom
utils.get{{BackendName}}keys()

8.1.5 Operation of type HEAD

HEAD routes are very similar to DELETE routes in our implementation, hence why we’re covering them fourth.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

• the function that is going to call your head() function is also called head(), and it’s defined in /lib/data/
multipleBackendGateway.js;

• define a function with signature like head(objectGetInfo, reqUids, callback); this is worth exploring a bit more
as these parameters are the same for all backends:

// TODO:: generate this from jsdoc

• objectGetInfo: a dictionary with two entries: key, the object key in the data store, and client, the data store name;

• reqUids: the request unique ID used for logging;

• callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/

• this is where you should put all utility functions for your HEAD operation, and then import then in /lib/
data/external/{BackendName}Client.js, to keep your code clean;

tests/functional/aws-node-sdk/test/multipleBackend/get/get{BackendName}js

• every contribution should come with thorough functional tests, showing nominal context gives expected be-
haviour, and error cases are handled in a way that is standard with the backend (including error messages and
code);

• the ideal setup is if you simulate your backend locally, so as not to be subjected to network flakiness in the CI;
however, we know there might not be mockups available for every client; if that is the case of your backend,
you may test against the “real” endpoint of your data backend;

tests/functional/aws-node-sdk/test/multipleBackend/utils.js

Note: You should need this section if you have followed the tutorial in order (that is, if you have covered the PUT
operation already)

• where you’ll define a constant for your backend location matching your /tests/locationConfig/
locationConfigTests.json

• depending on your backend, the sample keys[] and associated made up objects may not work for you
(if your backend’s key format is different, for example); if that is the case, you should add a custom
utils.get{{BackendName}}keys()

62 Chapter 8. Add New Backend Storage To Zenko Cloudserver

scality-zenko-cloudserver, Release 7.0.0

8.1.6 Healthcheck

Healtchecks are used to make sure failure to write to a remote cloud is due to a problem on that remote cloud, an not
on Zenko’s side. This is usually done by trying to create a bucket that already exists, and making sure you get the
expected answer.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

• the function that is going to call your healthcheck() function is called checkExternalBackend() and it’s defined
in /lib/data/multipleBackendGateway.js; you will need to add your own;

• your healtcheck function should get location as a parameter, which is an object comprising:‘

• reqUids: the request unique ID used for logging;

• callback: your function’s callback (should handle errors);

/lib/data/external/{backendName}_lib/{backendName}_create_bucket.js

• this is where you should write the function performing the actual bucket creation;

/lib/data/external/{backendName}_lib/utils.js

• add an object named per your backend’s name to the backendHealth dictionary, with proper response and time
entries;

lib/data/multipleBackendGateway.js

• edit the healthcheck function to add your location’s array, and call your healthcheck; see pseudocode below for
a sample implementation, provided your backend name is ztore

1 (...) //<1>
2

3 healthcheck: (flightCheckOnStartUp, log, callback) => { //<1>
4 (...) //<1>
5 const ztoreArray = []; //<2>
6 async.each(Object.keys(clients), (location, cb) => { //<1>
7 (...) //<1>
8 } else if (client.clientType === 'ztore' {
9 ztoreArray.push(location); //<3>

10 return cb();
11 }
12 (...) //<1>
13 multBackendResp[location] = { code: 200, message: 'OK' }; //<1>
14 return cb();
15 }, () => { //<1>
16 async.parallel([
17 (...) //<1>
18 next => checkExternalBackend(//<4>
19 clients, ztoreArray, 'ztore', flightCheckOnStartUp,
20 externalBackendHealthCheckInterval, next),
21] (...) //<1>

(continues on next page)

8.1. Adding support for data backends not supporting the S3 API 63

scality-zenko-cloudserver, Release 7.0.0

(continued from previous page)

22 });
23 (...) //<1>
24 });
25 }

1. Code that is already there

2. The array that will store all locations of type ‘ztore’

3. Where you add locations of type ‘ztore’ to the array

4. Where you actually call the healthcheck function on all ‘ztore’ locations

8.1.7 Multipart upload (MPU)

This is the final part to supporting a new backend! MPU is far from the easiest subject, but you’ve come so far it
shouldn’t be a problem.

These are the files you’ll need to edit:

/lib/data/external/{BackendName}Client.js

You’ll be creating four functions with template signatures:

• createMPU(Key, metaHeaders, bucketName, websiteRedirectHeader, contentType, cacheControl, contentDis-
position, contentEncoding, log, callback) will initiate the multi part upload process; now, here, all parameters
are metadata headers except for:

• Key, the key id for the final object (collection of all parts);

• bucketName, the name of the bucket to which we will do an MPU;

• log, the logger;

• uploadPart(request, streamingV4Params, stream, size, key, uploadId, partNumber, bucketName, log, callback)
will be called for each part; the parameters can be explicited as follow:

• request, the request object for putting the part;

• streamingV4Params, parameters for auth V4 parameters against S3;

• stream, the node.js readable stream used to put the part;

• size, the size of the part;

• key, the key of the object;

• uploadId, multipart upload id string;

• partNumber, the number of the part in this MPU (ordered);

• bucketName, the name of the bucket to which we will do an MPU;

• log, the logger;

• completeMPU(jsonList, mdInfo, key, uploadId, bucketName, log, callback) will end the MPU process once
all parts are uploaded; parameters can be explicited as follows:

• jsonList, user-sent list of parts to include in final mpu object;

• mdInfo, object containing 3 keys: storedParts, mpuOverviewKey, and splitter;

64 Chapter 8. Add New Backend Storage To Zenko Cloudserver

scality-zenko-cloudserver, Release 7.0.0

• key, the key of the object;

• uploadId, multipart upload id string;

• bucketName, name of bucket;

• log, logger instance:

• abortMPU(key, uploadId, bucketName, log, callback) will handle errors, and make sure that all parts that may
have been uploaded will be deleted if the MPU ultimately fails; the parameters are:

• key, the key of the object;

• uploadId, multipart upload id string;

• bucketName, name of bucket;

• log, logger instance.

/lib/api/objectPutPart.js

• you’ll need to add your backend type in appropriate sections (simply look for other backends already imple-
mented).

/lib/data/external/{backendName}_lib/

• this is where you should put all utility functions for your MPU operations, and then import then in /lib/
data/external/{BackendName}Client.js, to keep your code clean;

lib/data/multipleBackendGateway.js

• edit the createMPU function to add your location type, and call your createMPU(); see pseudocode below for a
sample implementation, provided your backend name is ztore

1 (...) //<1>
2 createMPU:(key, metaHeaders, bucketName, websiteRedirectHeader, //<1>
3 location, contentType, cacheControl, contentDisposition,
4 contentEncoding, log, cb) => {
5 const client = clients[location]; //<1>
6 if (client.clientType === 'aws_s3') { //<1>
7 return client.createMPU(key, metaHeaders, bucketName,
8 websiteRedirectHeader, contentType, cacheControl,
9 contentDisposition, contentEncoding, log, cb);

10 } else if (client.clientType === 'ztore') { //<2>
11 return client.createMPU(key, metaHeaders, bucketName,
12 websiteRedirectHeader, contentType, cacheControl,
13 contentDisposition, contentEncoding, log, cb);
14 }
15 return cb();
16 };
17 (...) //<1>

1. Code that is already there

2. Where the createMPU() of your client is actually called

8.1. Adding support for data backends not supporting the S3 API 65

scality-zenko-cloudserver, Release 7.0.0

8.1.8 Add functional tests

• tests/functional/aws-node-sdk/test/multipleBackend/initMPU/
{BackendName}InitMPU.js

• tests/functional/aws-node-sdk/test/multipleBackend/listParts/
{BackendName}ListPart.js

• tests/functional/aws-node-sdk/test/multipleBackend/mpuAbort/
{BackendName}AbortMPU.js

• tests/functional/aws-node-sdk/test/multipleBackend/mpuComplete/
{BackendName}CompleteMPU.js

• tests/functional/aws-node-sdk/test/multipleBackend/mpuParts/
{BackendName}UploadPart.js

8.1.9 Adding support in Orbit, Zenko’s UI for simplified Multi Cloud Management

This can only be done by our core developers’ team. Once your backend integration is merged, you may open a feature
request on the Zenko repository, and we will get back to you after we evaluate feasability and maintainability.

8.2 S3 compatible backends

8.2.1 Adding support in Zenko’s Cloudserver

This is the easiest case for backend support integration: there is nothing to do but configuration! Follow the steps
described in our Using Public Clouds as data backends and make sure you:

• set details.awsEndpoint to your storage provider endpoint;

• use details.credentials and not details.credentialsProfile to set your credentials for that
S3-compatible backend.

For example, if you’re using a Wasabi bucket as a backend, then your region definition for that backend will look
something like:

"wasabi-bucket-zenkobucket": {
"type": "aws_s3",
"legacyAwsBehavior": true,
"details": {
"awsEndpoint": "s3.wasabisys.com",
"bucketName": "zenkobucket",
"bucketMatch": true,
"credentials": {
"accessKey": "\\{YOUR_WASABI_ACCESS_KEY}",
"secretKey": "\\{YOUR_WASABI_SECRET_KEY}"
}
}
},

Adding support in Zenko Orbit

This can only be done by our core developpers’ team. If that’s what you’re after, open a feature request on the Zenko
repository, and we will get back to you after we evaluate feasability and maintainability.

66 Chapter 8. Add New Backend Storage To Zenko Cloudserver

https://www.github.com/scality/Zenko/issues/new
https://www.github.com/scality/Zenko/issues/new
https://www.github.com/scality/Zenko/issues/new

scality-zenko-cloudserver, Release 7.0.0

We always encourage our community to offer new extensions to Zenko, and new backend support is paramount to
meeting more community needs. If that is something you want to contribute (or just do on your own version of the
cloudserver image), this is the guid to read. Please make sure you follow our Contributing Guidelines/.

If you need help with anything, please search our forum for more information.

8.3 Add support for a new backend

Currently the main public cloud protocols are supported and more can be added. There are two main types of backend:
those compatible with Amazon’s S3 protocol and those not compatible.

Backend type Supported Active WIP Not started
Private disk/fs x
AWS S3 x
Microsoft Azure x
Backblaze B2 x
Google Cloud x
Openstack Swift x

Important: Should you want to request for a new backend to be supported, please do so by opening a Github issue,
and filling out the “Feature Request” section of our template.

To add support for a new backend support to Cloudserver official repository, please follow these steps:

• familiarize yourself with our Contributing Guidelines

• open a Github issue and fill out Feature Request form, and specify you would like to contribute it yourself;

• wait for our core team to get back to you with an answer on whether we are interested in taking that contribution
in (and hence committing to maintaining it over time);

• once approved, fork the repository and start your development;

• use the forum with any question you may have during the development process;

• when you think it’s ready, let us know so that we create a feature branch against which we’ll compare and review
your code;

• open a pull request with your changes against that dedicated feature branch;

• once that pull request gets merged, you’re done.

Tip: While we do take care of the final rebase (when we merge your feature branch on the latest default branch), we
do ask that you keep up to date with our latest default branch until then.

Important: If we do not approve your feature request, you may of course still work on supporting a new backend:
all our “no” means is that we do not have the resources, as part of our core development team, to maintain this feature
for the moment.

8.3. Add support for a new backend 67

https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md
https://forum.zenko.io
https://github.com/scality/S3/issues
https://github.com/scality/Guidelines/blob/master/CONTRIBUTING.md
https://github.com/scality/S3/issues
https://forum.zenko.io

scality-zenko-cloudserver, Release 7.0.0

68 Chapter 8. Add New Backend Storage To Zenko Cloudserver

CHAPTER 9

Add A New Backend

Supporting all possible public cloud storage APIs is Cloudserver’s ultimate goal. As an open source project, contribu-
tions are welcome.

The first step is to get familiar with building a custom Docker image for Cloudserver.

9.1 Build a Custom Docker Image

Clone Zenko’s Cloudserver, install all dependencies and start the service:

$ git clone https://github.com/scality/cloudserver
$ cd cloudserver
$ npm install
$ npm start

Tip: Some optional dependencies may fail, resulting in you seeing NPM WARN messages; these can safely be
ignored. Refer to the User documentation for all available options.

Build the Docker image:

docker build . -t
{{YOUR_DOCKERHUB_ACCOUNT}}/cloudserver:{{OPTIONAL_VERSION_TAG}}

Push the newly created Docker image to your own hub:

docker push
{{YOUR_DOCKERHUB_ACCOUNT}}/cloudserver:{{OPTIONAL_VERSION_TAG}}

Note: To perform this last operation, you need to be authenticated with DockerHub

69

scality-zenko-cloudserver, Release 7.0.0

There are two main types of backend you could want Zenko to support:

== link:S3_COMPATIBLE_BACKENDS.adoc[S3 compatible data backends]

== link:NON_S3_COMPATIBLE_BACKENDS.adoc[Data backends using another protocol than the S3 protocol]

70 Chapter 9. Add A New Backend

	Contributing
	Need help?
	Got an idea? Get started!
	Don’t write code? There are other ways to help!

	Getting Started
	Installation
	Run it with a file backend
	Run it with multiple data backends
	Run it with an in-memory backend
	Run it for continuous integration testing or in production with Docker
	Testing
	Configuration

	Using Public Clouds as data backends
	Introduction
	AWS S3 as a data backend
	Microsoft Azure as a data backend
	For any data backend

	Clients
	GUI
	Command Line Tools
	JavaScript
	JAVA
	Ruby
	Python
	PHP

	Docker
	Environment Variables
	Tunables and Setup Tips
	Continuous integration with Docker hosted CloudServer
	In production with Docker hosted CloudServer

	Integrations
	High Availability
	S3FS
	Duplicity

	Architecture
	Versioning
	Data-metadata daemon Architecture and Operational guide
	Listing
	Encryption

	Add New Backend Storage To Zenko Cloudserver
	Adding support for data backends not supporting the S3 API
	S3 compatible backends
	Add support for a new backend

	Add A New Backend
	Build a Custom Docker Image

